This commit is contained in:
2025-02-14 07:58:45 +01:00
parent 0cd4403cc2
commit c3a717ccbe
135 changed files with 3914 additions and 4 deletions

View File

@@ -0,0 +1,70 @@
import pandas as pd
# Load the dataset: Order;Lot Area;Street;Neighborhood;Bldg Type;House Style;Overall Qual;Overall Cond;Year Built;Year Remod/Add;1st Flr over Lot Area;1st Flr SF;Mo Sold;Yr Sold;Sale Type;Sale Condition;SalePrice
data = pd.read_csv("AmesHousing.csv", sep=';')
# View dataset structure
print(data.head())
print(data.info())
# Compute "years since built"
data['Years Since Built'] = data['Yr Sold'] - data['Year Built']
# Compute "years since remod/add"
data['Years Since Remod/Add'] = data['Yr Sold'] - data['Year Remod/Add']
# View the updated dataset
print(data[['Years Since Built', 'Years Since Remod/Add']].head())
# Categorize SalePrice into "cheap" and "expensive"
data['Price Category'] = data['SalePrice'].apply(lambda x: 'cheap' if x <= 160000 else 'expensive')
# View the updated dataset
print(data[['SalePrice', 'Price Category']].head())
# Define a threshold for low-frequency values
threshold = 5
# Iterate through each column
for column in data.columns:
# Only process categorical columns (non-numeric, or treat numeric as categorical if needed)
if data[column].dtype == 'object' or data[column].nunique() < 20: # Customize this condition for your use case
# Count frequency of each value
frequencies = data[column].value_counts()
# Identify categories with few occurrences
low_frequency_values = frequencies[frequencies < threshold].index
# Replace infrequent values with "Other"
data[column] = data[column].apply(lambda x: 'Other' if x in low_frequency_values else x)
# View the dataframe after reclassification
print(data.head())
# Threshold for imbalance percentage (e.g., any class with >99% of the data)
imbalance_threshold = 0.99
# Identify columns to drop
columns_to_drop = []
# Loop through each column in the DataFrame
for column in data.columns:
# Only analyze categorical variables
if data[column].dtype == 'object' or data[column].nunique() < 20:
# Compute class distribution
class_distribution = data[column].value_counts(normalize=True)
# Check if any single class exceeds the imbalance threshold
if class_distribution.max() > imbalance_threshold:
print(f"Extreme imbalance found in '{column}' (Dropping column)")
columns_to_drop.append(column)
# You might want to drop other irrelevant variables explicitly
# Add them to columns_to_drop if not needed
# Example: columns_to_drop.append('Unnamed_column')
# Drop the identified columns
data = data.drop(columns=columns_to_drop)
# Output the cleaned dataset
print(f"Columns dropped: {columns_to_drop}")
print(data.head())