a
1
.obsidian/community-plugins.json
vendored
@@ -1,6 +1,5 @@
|
|||||||
[
|
[
|
||||||
"omnisearch",
|
"omnisearch",
|
||||||
"obsidian-ocr",
|
|
||||||
"text-extractor",
|
"text-extractor",
|
||||||
"better-word-count",
|
"better-word-count",
|
||||||
"obsidian-enhancing-export",
|
"obsidian-enhancing-export",
|
||||||
|
|||||||
BIN
Pasted image 20241205160950.png
Normal file
|
After Width: | Height: | Size: 46 KiB |
BIN
Pasted image 20241205161002.png
Normal file
|
After Width: | Height: | Size: 36 KiB |
BIN
Pasted image 20241205161024.png
Normal file
|
After Width: | Height: | Size: 78 KiB |
BIN
Pasted image 20241205161036.png
Normal file
|
After Width: | Height: | Size: 58 KiB |
BIN
Pasted image 20241205161108.png
Normal file
|
After Width: | Height: | Size: 42 KiB |
BIN
Pasted image 20241205161119.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
BIN
Pasted image 20241205161308.png
Normal file
|
After Width: | Height: | Size: 22 KiB |
BIN
Pasted image 20241205161326.png
Normal file
|
After Width: | Height: | Size: 46 KiB |
BIN
Pasted image 20241205161509.png
Normal file
|
After Width: | Height: | Size: 50 KiB |
BIN
Pasted image 20241205161717.png
Normal file
|
After Width: | Height: | Size: 41 KiB |
BIN
Pasted image 20241205161739.png
Normal file
|
After Width: | Height: | Size: 91 KiB |
BIN
Pasted image 20241205234600.png
Normal file
|
After Width: | Height: | Size: 30 KiB |
BIN
Pasted image 20241205234621.png
Normal file
|
After Width: | Height: | Size: 40 KiB |
BIN
Pasted image 20241205234646.png
Normal file
|
After Width: | Height: | Size: 34 KiB |
BIN
Pasted image 20241205234656.png
Normal file
|
After Width: | Height: | Size: 25 KiB |
BIN
Pasted image 20241205234732.png
Normal file
|
After Width: | Height: | Size: 38 KiB |
BIN
Pasted image 20241205234924.png
Normal file
|
After Width: | Height: | Size: 38 KiB |
BIN
Pasted image 20241205234938.png
Normal file
|
After Width: | Height: | Size: 62 KiB |
BIN
Pasted image 20241205234951.png
Normal file
|
After Width: | Height: | Size: 51 KiB |
BIN
Pasted image 20241205235039.png
Normal file
|
After Width: | Height: | Size: 53 KiB |
BIN
Pasted image 20241205235249.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
Pasted image 20241205235306.png
Normal file
|
After Width: | Height: | Size: 65 KiB |
BIN
Pasted image 20241205235322.png
Normal file
|
After Width: | Height: | Size: 42 KiB |
BIN
Pasted image 20241205235347.png
Normal file
|
After Width: | Height: | Size: 44 KiB |
BIN
Pasted image 20241205235403.png
Normal file
|
After Width: | Height: | Size: 45 KiB |
BIN
Pasted image 20241205235524.png
Normal file
|
After Width: | Height: | Size: 69 KiB |
BIN
Pasted image 20241205235604.png
Normal file
|
After Width: | Height: | Size: 46 KiB |
BIN
Pasted image 20241205235614.png
Normal file
|
After Width: | Height: | Size: 37 KiB |
BIN
Pasted image 20241205235635.png
Normal file
|
After Width: | Height: | Size: 54 KiB |
BIN
Pasted image 20241205235827.png
Normal file
|
After Width: | Height: | Size: 43 KiB |
BIN
Pasted image 20241205235837.png
Normal file
|
After Width: | Height: | Size: 53 KiB |
@@ -0,0 +1,487 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "753cfea7-6082-484d-a916-50554ca4cb9c",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Crash Course Python\n",
|
||||||
|
"During this session, you will get a brief introduction into Python. Therefore, follow the instructions in this notebook step by step. Do not hesitate to ask questions! The instruction given are not complete, therefore: Try it on your own, play a little with the code and take a look at the official documentation of python:\n",
|
||||||
|
"https://docs.python.org/3.11/"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "beb6f785-e6a0-48e8-b838-a0e5a0987f8e",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Data types\n",
|
||||||
|
"There are different built in data types in python. A variable takes the corresponding data type, if it is assigned to an instance of this type. with the Python command `type` one can check the type of a given variable or value."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "0f529564-bfee-4d55-8110-8be138863d75",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"type(5)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5f40d465-531f-420a-8442-6875e877bb5e",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Boolean, Numbers & Strings\n",
|
||||||
|
"In Python one can easily work with boolean, numbers and strings. \n",
|
||||||
|
" - True and False are the constants for boolean. Operators are often written out (not False, True or False ...)\n",
|
||||||
|
" - Strings can be defined by \"...\" and '...', but also \"\"\"...\"\"\" for multi-line strings."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "962dfa3d-90b5-4ed8-b5f5-f32093f1daf7",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"long_string = \"\"\"Hallo,\n",
|
||||||
|
"I'm a long string\"\"\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "8592fb25-7882-456e-8418-b02ac9f0140c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"A = True\n",
|
||||||
|
"B = False\n",
|
||||||
|
"\n",
|
||||||
|
"not (A or B)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "3ac1a2e0-a7ec-43d2-90f6-220a717a3415",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Play around with numbers, strings an boolean. Sum up some strings, define numbers and perform some basic math."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "db978452-f0d4-4511-9fba-e0d4231e3e6d",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "7142dffd-b4f0-40ea-8d0c-fee412705ab9",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Especially strings, have some built in functions. E.g. with upper() one can convert a string in only upper letters."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "c1292afe-e088-4ca7-a32c-8026d68e37e5",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"\"hallo\".upper()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "af78c85f-4e66-45f5-a114-4f8c992b8b07",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Take a look into the documentation for strings and check some further functions one can directly use."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "b297a9b2-a72d-477d-81aa-97c4af6f4d39",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Lists\n",
|
||||||
|
"One special data type are lists. Similar to an array, a list is a chain of values. In Python a list is defined by [] and can store different data types."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "48d27fe8-609d-4f9a-9f50-03c221dad093",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"[0, \"hallo\", False]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "6ce9c921-ff6a-4539-b0b8-b3c19f155bca",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"A value in a list can be accessed by given the position in brackets []. E.g. in the following example the second (index 1) element is requested. One can also access elements backwards by using a negative index."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "7ed90d0e-9181-46ea-9d07-19cdc8d75538",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"[0, \"hallo\", False][1]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "4a3bea0f-1f45-4131-bb20-2fc30ce459a8",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"[0, \"hallo\", False][-2]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "de6acc40-a65f-45cc-8cb6-8e77a5cdb79f",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"One can also access a range of elements, by using the following notation in the brackets: start:end. The result is a list again. \n",
|
||||||
|
"\n",
|
||||||
|
"**Task** Take the upper list and access the first two elements of the list."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "2d1a5e9d-43a3-4793-9064-2b1f001923d4",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "3ebe85d9-5735-45c8-9aec-7e88732ce585",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Elements can be deleted from a list with the `del` command."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "cda33a05-45eb-4463-a6d8-ebad296719d9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"tmp_list = [0, \"hallo\", False]\n",
|
||||||
|
"del tmp_list[-2]\n",
|
||||||
|
"\n",
|
||||||
|
"tmp_list"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "813ffc8e-9d2f-4cb1-bd2e-34b66a2541bc",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Dictionaries\n",
|
||||||
|
"Next to lists (tuples and sets - not handled here), Python offers Dictionaries as an additional data type. A dictionary is a list of key-value pairs, where a value is accessed by the value. A dictionary is defined by {...}, keys are typically strings, values can be nearly anything one like."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "74b09698-9fb5-4fe0-9402-cee7085f637d",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"some_functions = {\n",
|
||||||
|
" \"print\": print,\n",
|
||||||
|
" \"input\": input,\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"some_functions[\"print\"](\"dictionaries can store nearly everything\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "b1306508-e1a2-43da-a995-4fb09acc5fba",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Create a dictionary which stores for a semester a list of lectures."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "d693c391-727f-4da9-83e5-a8efb0395d34",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "66f74d92-497a-433c-9026-267308114e40",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## If statement\n",
|
||||||
|
"The if statement has the following structure: `if` CONDITION: Where condition is something evaluating to `True` or `False`. After the : a intended block begins, which is evaluated if the CONDITION is True. With else: and `elif` CONDITION the else or else if case can be used."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "cb3755b6-109f-419b-8ed2-0102a89479b9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"tmp_number = 3\n",
|
||||||
|
"\n",
|
||||||
|
"if tmp_number > 4:\n",
|
||||||
|
" print(f\"{tmp_number} is larger than 4\")\n",
|
||||||
|
"elif tmp_number < 4:\n",
|
||||||
|
" print(f\"{tmp_number} is smaller than 4\")\n",
|
||||||
|
"else:\n",
|
||||||
|
" print(f\"{tmp_number} equals 4\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "c6ba6285-5228-4140-b03e-44733dddac05",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Create an if statement which checks if a given number is even or odd. "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "4a4d25b0-f476-4201-9f78-781a3d38b7c3",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "64fb2bdf-e2e2-428b-9ef1-bf79a296086d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## for statement\n",
|
||||||
|
"The `for` statement has the following structure: for VALUE in ITERATOR: Where VALUE takes all values given in ITERATOR. After the : a intended block begins, which is evaluated for every step. ITERATOR can be everything one can iterate over. There are plenty functions like range to iterate over a list of numbers, but one can also use a list to iterate over."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "3a4c109c-0966-4343-b4f3-c4a692adf52a",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"for i in range(10):\n",
|
||||||
|
" print(i**2)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5848b9ff-5a7d-4299-b9d2-fb0fc92fa455",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Create a loop which iterates of every entry in a list of lectures and checks if the lecture is called \"Data Science\"."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "debf84c2-79cf-4b2b-9420-28c1a9ededf1",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "7650dc1e-8521-4ae2-b63f-d6954805385d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Functions\n",
|
||||||
|
"A function has the following structure: def NAME(VAR1,VAR2,VAR3=DEFAULTVAL3): Where after the : a intended block starts, which is evaluated when the function is called. The parameters is a list of Variables, where a variable can also have a default value. The returned value is given by a return statement."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "d739bd2e-bfc7-4256-a9a5-947f7de0ada9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "2f725e9f-9c99-417c-8911-439c96e33e24",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "a3eabab2-7e88-428f-b81f-2b910d61af74",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def my_add(x,y=2):\n",
|
||||||
|
" return x+y\n",
|
||||||
|
"\n",
|
||||||
|
"print(my_add(2,4))\n",
|
||||||
|
"print(my_add(2))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5f5fca24-7b2c-493c-bd0e-af649ac89a0e",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Create a function which takes a list of numbers and returns a list where every number is multiplied with a factor."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "1f1d96ed-9af3-435c-8df1-d15c89a83e6c",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "e7b67ab6-b009-414b-8f35-da4b1ec09564",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Classes\n",
|
||||||
|
"Take a look into the official Python tutorial for the way how a class is defined in Python:\n",
|
||||||
|
"https://docs.python.org/3/tutorial/classes.html"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "430b950b-b9a8-4e42-8f71-9dd938959ac5",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "85f4f762-c825-4865-abab-74509038fbc2",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Create a class which represents a lecture. Every lecture has a list of students and a title. Furthermore create a function which adds students to a lecture and a function which returns the number of students. "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "1efbb8a3-938a-4ebe-b05c-88687a49a6d6",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "04d85fef-d5eb-4c9a-aea3-c4647777d58b",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Modules\n",
|
||||||
|
"Python has a lot of modules included, but there is also a huge amount of models which can be installed. A modul can be imported with the import command. A module can be installed with the help of pip (command line tool). "
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "b8b0d5b5-ec05-4c29-948b-a9c09a7944c1",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import tqdm\n",
|
||||||
|
"\n",
|
||||||
|
"r = 0\n",
|
||||||
|
"for i in tqdm.tqdm(range(10000000)):\n",
|
||||||
|
" r += i\n",
|
||||||
|
"\n",
|
||||||
|
"print(r)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "f5c40f75-f103-47c6-b5ca-a7fae135bd2f",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"In jupyter a command line command can be executed in a code cell if it starts with a !."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "42c49615-29ef-40b3-9954-8cf589bd505b",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!cmd"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "cbcc2c40-05c9-42cc-9281-51fd307d44f9",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"**Task:** Take a look on PyPI and search for an interesting module. Install the module and try it out. Some example modules:\n",
|
||||||
|
" - tensorflow (deep learning)\n",
|
||||||
|
" - numpy (numerical methods)\n",
|
||||||
|
" - sklearn (machine learning)\n",
|
||||||
|
" - ..."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "93cf0ef8-c5a6-4e6b-b7d8-9d55728e4ff4",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.9"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
||||||
BIN
WS2425/Data Science/Ue_P/exercise_1/p_01_slides.pdf
Normal file
2931
WS2425/Data Science/Ue_P/exercise_2/data/AmesHousing.csv
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_2/exercise_2.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_3/excercise_3.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_3/numbers.zip
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_4/excercise_4.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_5/excercise_5.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_6/excercise_6.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_7/excercise_7.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_8/excercise_8.pdf
Normal file
BIN
WS2425/Data Science/Ue_P/exercise_9/excercise_9.pdf
Normal file
185
WS2425/Data Science/VL/Zusammenfassung.md
Normal file
@@ -0,0 +1,185 @@
|
|||||||
|
# 1
|
||||||
|
1. **Organizational Information**
|
||||||
|
|
||||||
|
- **Page:** 2
|
||||||
|
- **Notes:**
|
||||||
|
- Contact: [klaus.kaiser@fh-dortmund.de](mailto:klaus.kaiser@fh-dortmund.de)
|
||||||
|
- Room: B.2.04
|
||||||
|
- Professor Klaus Kaiser has a background in data science across various industries.
|
||||||
|
2. **Introduction to Data Science**
|
||||||
|
|
||||||
|
- **Page:** 4-7
|
||||||
|
- **Notes:**
|
||||||
|
- Definition: Data science is about turning raw data into meaningful insights.
|
||||||
|
- Interdisciplinary field combining statistics, computing, and domain knowledge.
|
||||||
|
- Historical context of the term “data science” from 1962 to 2001.
|
||||||
|
3. **What is Data Science?**
|
||||||
|
|
||||||
|
- **Page:** 8-10
|
||||||
|
- **Notes:**
|
||||||
|
- Data science involves using methods and systems to extract knowledge from data.
|
||||||
|
- The intersection of math/statistics, computer science, and domain knowledge is crucial.
|
||||||
|
4. **Practical Example of Data Science Project: Monkey Detection**
|
||||||
|
|
||||||
|
- **Page:** 16-24
|
||||||
|
- **Notes:**
|
||||||
|
- Steps include understanding the problem, data collection, labeling, model training, and deployment.
|
||||||
|
5. **Related Fields in Data Science**
|
||||||
|
|
||||||
|
- **Page:** 14-15
|
||||||
|
- **Notes:**
|
||||||
|
- Data Engineering: Building systems for data collection and processing.
|
||||||
|
- Data Analysis: Inspecting and transforming data to inform decisions.
|
||||||
|
6. **Tasks in Data Science**
|
||||||
|
|
||||||
|
- **Page:** 16
|
||||||
|
- **Notes:**
|
||||||
|
- Overview of different tasks within classical machine learning.
|
||||||
|
7. **Real-World Examples of Data Science Applications**
|
||||||
|
|
||||||
|
- **Page:** 25-32
|
||||||
|
- **Notes:**
|
||||||
|
- Applications include autonomous driving, face recognition, predictive maintenance, fraud detection, recommendation systems, and cancer detection.
|
||||||
|
8. **Overview of Lecture Content**
|
||||||
|
|
||||||
|
- **Page:** 34-35
|
||||||
|
- **Notes:**
|
||||||
|
- Basic topics include data basics, statistics, presentation techniques, and machine learning.
|
||||||
|
9. **Organizational: Schedule and Exam Information**
|
||||||
|
|
||||||
|
- **Page:** 38-40
|
||||||
|
- **Notes:**
|
||||||
|
- Lecture and exercise schedules, language of instruction, and exam details (written exam with bonus points for data analytics).
|
||||||
|
10. **Expectations from Students**
|
||||||
|
|
||||||
|
- **Page:** 42-43
|
||||||
|
- **Notes:**
|
||||||
|
- Emphasis on respect, professionalism, and willingness to participate.
|
||||||
|
11. **How to Continue in Data Science**
|
||||||
|
|
||||||
|
- **Page:** 46-48
|
||||||
|
- **Notes:**
|
||||||
|
- Suggested literature for further reading and related courses available in the curriculum.
|
||||||
|
12. **Summary & References**
|
||||||
|
|
||||||
|
- **Page:** 51-55
|
||||||
|
- **Notes:**
|
||||||
|
- Key takeaways: ability to explain data science and recognize its applications.
|
||||||
|
- Important references for further study are provided.
|
||||||
|
|
||||||
|
# 2
|
||||||
|
- **Data Science Definition**: Creating knowledge from data using math, statistics, and computer science.
|
||||||
|
|
||||||
|
- **Data Types**:
|
||||||
|
|
||||||
|
- **Structured**: Follows a predefined model (e.g., tables).
|
||||||
|
|
||||||
|
- **Unstructured**: Lacks explicit structure (e.g., text, images).
|
||||||
|
|
||||||
|
- **Data Categories**:
|
||||||
|
|
||||||
|
- Discrete vs. Continuous
|
||||||
|
|
||||||
|
- Nominal, Ordinal, Interval, Ratio
|
||||||
|
|
||||||
|
- Qualitative vs. Quantitative
|
||||||
|
|
||||||
|
- **Data Interchange Formats**: Common formats include CSV and JSON.
|
||||||
|
|
||||||
|
- **Data Trust**: Importance of data quality dimensions: accuracy, completeness, consistency, timeliness, uniqueness, validity.
|
||||||
|
|
||||||
|
# 3
|
||||||
|
- **Data Categories**: Discrete, continuous, nominal, ordinal, interval, ratio, qualitative, and quantitative.
|
||||||
|
|
||||||
|
- **Data Interchange Formats**: Common formats include CSV and JSON.
|
||||||
|
|
||||||
|
- **Data Quality Dimensions**: Accuracy, completeness, consistency, timelessness, uniqueness, validity.
|
||||||
|
|
||||||
|
- **Data Types**: Primary (real-time, specific) vs. secondary (past, economical).
|
||||||
|
|
||||||
|
- **Data Acquisition Methods**: Capturing (sensors, surveys), retrieving (databases, APIs), collecting (web scraping).
|
||||||
|
|
||||||
|
- **FAIR and Open Data**: Principles for sustainable data usage and importance in scientific reproducibility.
|
||||||
|
|
||||||
|
# 4
|
||||||
|
- **Primary vs. Secondary Data**: Primary data is collected for a specific purpose, while secondary data is sourced from existing datasets.
|
||||||
|
|
||||||
|
- **Data Collection Techniques**: Includes scraping, which extracts data from websites, and considerations for legality and data protection.
|
||||||
|
|
||||||
|
- **Data Protection**: Emphasizes GDPR compliance, anonymization, and pseudonymization of personal data.
|
||||||
|
|
||||||
|
- **Statistics Basics**: Introduces descriptive and inductive statistics, frequency distributions, and graphical representations like histograms and bar charts.
|
||||||
|
|
||||||
|
- **FAIR Principles**: Focus on data findability, accessibility, interoperability, and reusability.
|
||||||
|
|
||||||
|
# 5
|
||||||
|
- **Data Scraping**: Extracts data from program outputs; should be a last resort.
|
||||||
|
|
||||||
|
- **Anonymization**: Removes personal info to protect identity; pseudonymization allows identification with additional info.
|
||||||
|
|
||||||
|
- **Statistics Types**: Descriptive, explorative, and inductive statistics.
|
||||||
|
|
||||||
|
- **Frequencies**: Absolute and relative frequencies; visualized through histograms, pie charts, and bar charts.
|
||||||
|
|
||||||
|
- **Central Tendencies**: Mode, median, and mean; box plots visualize data distribution.
|
||||||
|
|
||||||
|
- **Statistical Dispersion**: Measures spread of data; includes range, quartile range, and empirical variance.
|
||||||
|
|
||||||
|
# 6
|
||||||
|
- **Histograms**: Visual representation of frequency for continuous data.
|
||||||
|
|
||||||
|
- **Cumulative Frequency**: Measures total frequency up to a certain value.
|
||||||
|
|
||||||
|
- **Statistical Dispersion**: Includes empirical variance and standard deviation.
|
||||||
|
|
||||||
|
- **Bivariate Analysis**: Examines relationships between two variables.
|
||||||
|
|
||||||
|
- **Correlation Coefficients**: Quantifies the strength and direction of relationships.
|
||||||
|
|
||||||
|
- **Contingency Tables**: Displays frequencies of categorical variables.
|
||||||
|
|
||||||
|
- **Pearson Coefficient**: Measures linear correlation between metric variables.
|
||||||
|
|
||||||
|
- **Ordinal Data**: Can be analyzed using rank correlation methods.
|
||||||
|
|
||||||
|
# 7
|
||||||
|
- **Correlation**: Describes relationships between two variables using correlation coefficients based on variable types (nominal, ordinal, metric).
|
||||||
|
|
||||||
|
- **Contingency Tables**: Used for two-dimensional frequency distributions; includes conditional frequencies and measures of association.
|
||||||
|
|
||||||
|
- **Probability Theory**: Introduces random experiments, events, and Kolmogorov axioms; covers Laplace experiments and combinatorics.
|
||||||
|
|
||||||
|
- **Bayes’ Theorem**: Explains conditional probability and its application in real-world scenarios, such as medical testing.
|
||||||
|
|
||||||
|
- **Outcome**: Understanding of probability basics, combinatorial calculations, and Bayes’ theorem application.
|
||||||
|
|
||||||
|
# 8
|
||||||
|
- **Random Experiment**: Defined by well-defined conditions with unpredictable outcomes (e.g., dice throw).
|
||||||
|
|
||||||
|
- **Kolmogorov Axioms**: Fundamental properties of probability measures.
|
||||||
|
|
||||||
|
- **Random Variables**: Assign outcomes to numbers; can be discrete (countable values) or continuous (any value in an interval).
|
||||||
|
|
||||||
|
- **Distributions**: Includes discrete (e.g., binomial, uniform) and continuous (e.g., normal) distributions.
|
||||||
|
|
||||||
|
- **Expected Value & Variance**: Key metrics for understanding random variables' behavior.
|
||||||
|
|
||||||
|
- **Applications**: Used in statistical tests and linear regression.
|
||||||
|
|
||||||
|
# 9
|
||||||
|
- **Random Variables**: Defined as functions mapping outcomes to real numbers.
|
||||||
|
|
||||||
|
- **Discrete vs. Continuous Distributions**: Discrete has countable outcomes; continuous uses probability density functions.
|
||||||
|
|
||||||
|
- **Simple Linear Regression**: Models correlation between independent (X) and dependent (Y) variables.
|
||||||
|
|
||||||
|
- **Key Concepts**:
|
||||||
|
|
||||||
|
- **Residual Analysis**: Evaluates fit of regression line.
|
||||||
|
|
||||||
|
- **Determinacy Measure (R²)**: Indicates model fit; ranges from 0 to 1.
|
||||||
|
|
||||||
|
- **Estimation**: Parameters (β0, β1) estimated using least squares method.
|
||||||
|
|
||||||
|
- **Applications**: Used in various fields to predict outcomes based on correlations.
|
||||||
|
|
||||||
BIN
WS2425/Data Science/VL/lecture_01.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_02.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_03.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_04.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_05.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_06.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_07.pdf
Normal file
11
WS2425/Data Science/VL/lecture_07_notes.md
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
![[Pasted image 20241205160950.png]]
|
||||||
|
![[Pasted image 20241205161002.png]]
|
||||||
|
![[Pasted image 20241205161024.png]]
|
||||||
|
![[Pasted image 20241205161036.png]]
|
||||||
|
![[Pasted image 20241205161108.png]]
|
||||||
|
![[Pasted image 20241205161119.png]]
|
||||||
|
![[Pasted image 20241205161308.png]]
|
||||||
|
![[Pasted image 20241205161326.png]]
|
||||||
|
![[Pasted image 20241205161509.png]]
|
||||||
|
![[Pasted image 20241205161717.png]]
|
||||||
|
![[Pasted image 20241205161739.png]]
|
||||||
BIN
WS2425/Data Science/VL/lecture_08.pdf
Normal file
BIN
WS2425/Data Science/VL/lecture_08_neu.pdf
Normal file
14
WS2425/Data Science/VL/lecture_08_notes.md
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
![[Pasted image 20241205234600.png]]
|
||||||
|
![[Pasted image 20241205234621.png]]
|
||||||
|
![[Pasted image 20241205234646.png]]
|
||||||
|
![[Pasted image 20241205234656.png]]
|
||||||
|
![[Pasted image 20241205234732.png]]
|
||||||
|
![[Pasted image 20241205234924.png]]
|
||||||
|
![[Pasted image 20241205234938.png]]
|
||||||
|
![[Pasted image 20241205234951.png]]
|
||||||
|
![[Pasted image 20241205235039.png]]
|
||||||
|
![[Pasted image 20241205235249.png]]
|
||||||
|
![[Pasted image 20241205235306.png]]
|
||||||
|
![[Pasted image 20241205235322.png]]
|
||||||
|
![[Pasted image 20241205235347.png]]
|
||||||
|
![[Pasted image 20241205235403.png]]
|
||||||
BIN
WS2425/Data Science/VL/lecture_09.pdf
Normal file
6
WS2425/Data Science/VL/lecture_09_notes.md
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
![[Pasted image 20241205235524.png]]
|
||||||
|
![[Pasted image 20241205235604.png]]
|
||||||
|
![[Pasted image 20241205235614.png]]
|
||||||
|
![[Pasted image 20241205235635.png]]
|
||||||
|
![[Pasted image 20241205235827.png]]
|
||||||
|
![[Pasted image 20241205235837.png]]
|
||||||