
Softwaretechnik 1(A)

Domain-Driven Design

Autoren: Prof. Dr. Sabine Sachweh
Unterlagen basieren auf
Folien von
Prof. Dr. Sven Jörges

Domain-Driven Design

01: Einführung und
Begriffsdefinitionen

Autoren: Prof. Dr. Sabine Sachweh
Unterlagen basieren auf
Folien von
Prof. Dr. Sven Jörges

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 3

▪ Erstmals 2003 von Eric Evans beschrieben [Eva03]

Domain-Driven Design (DDD)

3

TheBig Blue Book [Eva03] [Ver17]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 4

▪ Domain-Driven Design Europe
DDD Europe (seit 2016) →4./5. Februar 21

▪ KanDDDinsky Conference (seit 2017)
2020 wegen Covid19 ausgesetzt

▪ Explore DDD (seit 2017)
2020 Online (Ende Okt/Anfang Nov.)

DDD-Konferenzen

https://kandddinsky.de/
http://exploreddd.com/

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 5

▪ Methodik bzw.

• Satz von Prinzipien,

• Mustern und

• Werkzeugen,

die das Entwerfen und Entwickeln

komplexer Software unterstützen

▪ Zentraler Begriff:Domäne

Begriffsdefinition

[Quelle: DDD_Borat auf Twitter]

https://twitter.com/DDD_Borat/status/1106494018475737088

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 6

Begriff: Domäne

"Asphere ofknowledge, influence, oractivity.Thesubject area towhichtheuser applies aprogram is

the domainofthesoftware." Eric Evans [Eva14, S.vi]

„Ein Wissens-, Einfluss- oder Aktivitätsbereich. Der Themenbereich, in dem ein Benutzer ein

Programm/Anwendung einsetzt, ist die Domäne der Software.“

Beispiele

▪ Steuern

▪ Buchhaltung

▪ Lagerhaltung

▪ Personalmanagement

▪ Versicherungsgeschäfte

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 7

▪ Software wird stets im Kontext einer Domäne eingesetzt

▪ Software spiegelt dabei Konzepte und Elemente der Domäne wieder

→ sie modelliertdie Domäne

▪ Zur Entwicklung der Sohware müssen die relevantenKonzepte und Elemente sowie

deren Beziehungen identifiziert und beschrieben werden

▪ Das dazu notwendige Wissenbesitzen typischerweise nichtdie

Sohwareentwicklerlnnen, sondern die FachexpertInnen (domain experts), die sich in der

entsprechenden Domäne auskennen

DDD: KERNIDEE

7

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 8

▪ Die Domäne, in der eine Software eingesetzt wird, steht im Fokus von DDD (anstatt

z.B. die Benutzeroberfläche oder das Datenbankmodell)

▪ Zentrale Tätigkeit: Entwicklerlnnen erstellen gemeinsam mit den Fachexpertlnnen ein

Domänenmodell

DDD: KERNIDEE (2)

8

"DDD is about designing software based on models of the underlying
domain."

„Bei DDD geht es um Software-Design auf Basis der zugrundeliegenden

Domäne"

Martin Fowler

https://martinfowler.com/bliki/BoundedContext.html

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 9

▪ Repräsentiert das Domänenwissen (z.B. Daten, Abläufe, Regeln etc.)

der Fachexpertlnnen in abstrahierter und strukturierter Form

▪ Keine festgelegte Notation, kein einzelnes Diagramm

▪ Form des Domänenmodells muss geeignet sein, um die Kommunikation zwischen

Fachexpertlnnen und Entwicklerlnnen zu unterstützen

Begriff: Domänenmodell

9

"A systemof abstractions thatdescribesselected aspectsof a domainand can be

used to solveproblems related to that domain." Eric Evans [Eva14, S.vi]

"Ein System von Abstraktionen, das ausgewählte Aspekte einer Domäne beschreibt und zur Lösung von

Problemen in Bezug auf diese Domäne verwendet werden kann."

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 10

Technische vs. Fachliche Sprache

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 11

Beispieldomäne: Industrie- und Handelskammern (IHK)

Technische vs. Fachliche Sprache

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 12

Technische vs. Fachliche Sprache

▪ Fachexpertlnnen und Entwicklerlnnen verwenden

unterschiedliche (Fach-)Sprachen

▪ Es wird eine gemeinsame Sprache benötigt, welche auf dem

Domänenmodell basiert

▪ DDD spricht hier von der Ubiquitous Language (allgegenwärtigen

Sprache)

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 13

▪ "Allgegenwärtig", da diese gemeinsame Sprache

• von allen beteiligten Personen sowie

• an allen Stellen (d.h. Dokumentation, Diagramme,

gesprochenes Wort, Code etc.)

verwendet wird.

▪ Das Domänenmodell sowie die darauf basierende Ubiquitous Language
werden von Fachexpertlnnen und Entwicklerlnnen gemeinsam entwickelt

Ubiquitous Language

13

" A language structured around the domainmodelandusedby all team members to connect all the

activities of the teamwith the soßware." Eric Evans [Eva03, S.514]

„ Eine Sprache, die um das Domänenmodell herum strukturiert ist und von allen Teammitgliedern verwendet wird, um

alle Aktivitäten des Teams mit der Software zu verbinden.“

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 14

▪ Verschiedene Techniken und Methoden können zur gemeinsamen Erschließung des

Domänenmodells angewendet werden, z.B.:

• Erstellung eines Glossarszur Sammlung und Erläuterung der Kernkonzepte

• Use-Case-Diagramme

• User-Stories

• Beschreibung vonSzenarien [Ver17, S. 34]

• Event Storming*

• Domain Storytelling*

Gemeinsamer Wissensaufbau

14

* Dazu spätermehr!

(✓)

✓

✓

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 15

▪ Domänen können sehr groß sein.
Abstraktion ist schwierig: Was ist relevant für das
Domänenmodell und was nicht?

▪ Ein einheitliches Domänenmodell für die gesamte Domäne?

• Schwer zu erreichen und potentiell sehr komplex [Ver17, S. 20-23]

• Bei mehreren Teams: Jedes Team ist zuständig für einen Teil des Modells
→ hoher Koordinationsaufwand, Gefahr eines Big Ball of Mud (englisch für „große
Matschkugel“)

Domänenmodell: Herausforderungen

15

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 16

▪ DDD unterscheidet zwischen der Modellierung

• im Großen (Strategisches Design) und

• im Kleinen (Taktisches Design)

Strategisches vs. Taktisches Design

16

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 17

▪ Aufteilung des Domänenmodells in sogenannte Bounded

Contexts (begrenzte Kontexte)

▪ Jeder Bounded Context hat ein eigenes Domänenmodell und

seine eigene Ubiquitous Language

▪ Zusammenhänge/Beziehungen zwischen Bounded Contexts

werden mittels Context Maps modelliert

▪ Zusätzliche Strukturierung komplexer Domänen (z.B. bei

Altsystemen) in Subdomains (Teildomänen, Subdomänen)

Strategisches Design

17

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 18

▪ Befasst sich mit der Modellierung innerhalb eines Bounded

Contexts

▪ DDD definiert eine Menge von Basisbausteinen

(auch: Building Blocks, Tactical Patterns) für Entwurf und

Implementierung

▪ → SWT 2

Taktisches Design

18

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 19

[Eva03] Evans E.; Domain-Driven Design: Tackling Complexity in the Heart of

Sohware. Addison-Wesley;2003

[Eva14] Evans E.; Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing; 2014; Kostenloser Download auf

domainlanguage.com

[Ver17] Vernon V.; Domain-Driven Design kompakt. dpunkt; 2017

Literaturquellen

http://domainlanguage.com/ddd/reference/

Domain-Driven Design

02: Strategisches Design –
Bounded Contexts

Autoren: Prof. Dr. Sabine Sachweh
Unterlagen basieren auf
Folien von
Prof. Dr. Sven Jörges

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 21

▪ Aufteilung des Domänenmodells in sogenannte Bounded

Contexts (begrenzte Kontexte)

▪ Jeder Bounded Context hat ein eigenes Domänenmodell und

seine eigene Ubiquitous Language

▪ Zusammenhänge/Beziehungen zwischen Bounded Contexts

werden mittels Context Maps modelliert

▪ Zusätzliche Strukturierung komplexer Domänen (z.B. bei

Altsystemen) in Subdomains (Teildomänen, Subdomänen)

Strategisches Design

21

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 22

Begriff: Bounded Context

"A description of a boundary(typically a subsystem, or the work of a particular team) within which a

particular model is defined andapplicable." Eric Evans [Eva14, S.vi]

„Eine Beschreibung einer Grenze (normalerweise eines Subsystems oder der Arbeit eines bestimmten Teams),

innerhalb derer ein bestimmtes Modell definiert und anwendbar ist. "

▪ "Strategisches Entwurfsmuster" [Ver17, S. 7]

▪ Fasst fachlich eng zusammengehörende Konzepte und Komponenten in einem eigenen

Domänenmodell zusammen (→ hohe Kohäsion!)

▪ Besitzt eine eigene Ubiquitous Language, die innerhalb des Bounded Contexts eindeutig

und konsistent ist

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 23

Die durch einen BoundedContextdefinierten Grenzen haben direkten Einfluss auf:

▪ Teams

• Für jeden Bounded Context sollte genau ein Team zuständig sein [Ver17, S. 14]

• Innerhalb des Teams wird die Ubiquitous Language des Bounded Contexts verwendet und entwickelt

▪ Entwurf der Software

• Für jeden Bounded Context sollte eine eigene Quellcode-Basis, ein eigenes Datenbankschema etc.

existieren [Ver17, S. 14]

• Das zuständige Team definiert die Schnittstellen für die Benutzung des Bounded Context

(→ Kapselung!)

Begriff: Bounded Context (2)

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 24

Aufgabe: Konzepte gruppieren

5

Quelle: Carola Lilienthal, The Core of Domain-Driven Design, Software Architecture Summit 2017

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 25

Beispieldomäne: IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 26

Beispieldomäne: Aufteilen in Bounded Contexts

Nach welchen Kriterien kann die Domäne "geschnitten" werden?

▪ Beispiele

• Nach (Fach-)Abteilungen bzw. Arbeitsgruppen in der Organisation

(z.B. Marketing, Buchhaltung, Support)

• Nach Geschäftsprozessen

(z.B. Versicherung: "Risikobewertung bei Neuverträgen", "Schadensregulierung")

• Nach kontextbezogenen Unterschieden in der Verwendung von Begriffen

(siehe Beispiel auf den folgenden Folien)

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 27

Beispieldomäne: IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 27

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 28Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 28

Beispieldomäne: IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 29Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 29

Beispieldomäne: IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 30

Beispieldomäne: IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 30

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 31

Beispieldomäne: IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 31

▪ Bounded Contexts können

überlappende Konzepte enthalten:

• „Firma“

− in Abteilung „Beitrag“

als Beitragszahler,

− in Abteilung “Beruf“

als Ausbildungsstätte

• „Person“

− in Abteilung „Firmendaten“

als Geschäftsführer,

− in Abteilung “Beruf“

als Prüfer

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 32

[Eva14] Evans E.; Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing; 2014; Kostenloser Download auf
domainlanguage.com

[Ver17] Vernon V.; Domain-Driven Design kompakt. dpunkt; 2017

Literaturquellen

http://domainlanguage.com/ddd/reference/

Domain-Driven Design

03: Strategisches Design –
Context Mapping

Autoren: Prof. Dr. Sabine Sachweh
Unterlagen basieren auf
Folien von
Prof. Dr. Sven Jörges

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 34

▪ Aufteilung des Domänenmodells in sogenannte Bounded

Contexts (begrenzte Kontexte)

▪ Jeder Bounded Context hat ein eigenes Domänenmodell und

seine eigene Ubiquitous Language

▪ Zusammenhänge/Beziehungen zwischen Bounded Contexts

werden mittels Context Maps modelliert

▪ Zusätzliche Strukturierung komplexer Domänen (z.B. bei

Altsystemen) in Subdomains (Teildomänen, Subdomänen)

Strategisches Design

34

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 35

▪ Context Mapping befasst sich mit den Beziehungen zwischen

bzw. mit der Integration von verschiedenen Bounded Contexts

! Folglich auch: Wechselseitige Beziehungen zwischen Teams!

▪ Context Maps skizzieren diese Beziehung

→ keine formal definierte Notation

(im Folgenden wird die Notation aus [Ver17] verwendet)

▪ Ziel: Klare Grenzen und Verträge zwischen Bounded Contexts definieren
[Ver17, S.51]

Begriff: Context Mapping

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 36

DDDdefiniert verschiedene Arten von Beziehungenzwischen BoundedContexts:

Arten von Context Mappings

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 36Quelle: [Mar06,S.68]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 37

▪ Shared Kernel = Kleines gemeinsames

Domänenmodell, das sich mehrere Bounded Contexts teilen

▪ z.B. in Form einer Bibliothek Vermeidet Duplizierung

▪ Führt zu einer engen Kopplung zwischen den Teams → bei

Änderung/Weiterentwicklung des geteilten Modells müssen alle beteiligten Teams

einbezogen werden

Shared Kernel

nach [Ver17]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 38

Modellelement "Identnummer" als SharedKernel

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 38

Shared Kernel – Beispiel IHK

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 39

Customer-Supplier

▪ Ein Bounded Context stellt etwas zur Verfügung (Supplier, Lieferant),

was ein anderer Bounded Context benötigt (Customer, Kunde)

▪ Der Supplier ist vorgeschaltet (upstream), der Customer ist nachgeschaltet

(downstream)

▪ Customer stellt Anforderungen an Supplier, der diese umsetzt

▪ Supplier bestimmt, wann und wie die Anforderungen umgesetzt werden

nach [Ver17]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 40

▪ Im Gegensatz zu Customer-Supplier nimmt der Upstream-Context keine Rücksicht auf

die Anforderungen des Downstream-Context

▪ Der Downstream-Context passt sich (engl. conforms to) dem Modell des Upstream-

Kontextes an

▪ Beispiel: Apple-Partner müssen sich dem Apple-Modell anpassen

Conformist

nach [Ver17]

muss sich anpassen

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 41

▪ Anticorruption Layer (ACL) = Übersetzungsschicht zwischen Upstream- und Downstream-Modell

▪ Von Downstream-Context zur Verfügung gestellt → Umsetzungsaufwand!

▪ Ziele:

• Entkopplung auf Seiten des Downstream-Contexts

• Abstraktion des Upstream-Modells

→ höhere Flexibilität bei der Gestaltung des eigenen Domänenmodells

Anticorruption Layer (ACL)

nach [Ver17]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 42

▪ GoF-Entwurfsmuster zur Umsetzung: z.B. Facade, Adapter

▪ (Technische) Beispiele: Java Persistence API (JPA) , SLF4J

Anticorruption Layer (ACL) (2)

nach [Ver17]

https://jcp.org/en/jsr/detail?id=338
https://www.slf4j.org/

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 43

▪ Open Host Service (OHS) = Wohldefinierte Schnittstelle (API, Protokoll),

die ein Bounded Context zum Zugriff anbietet

▪ Schnittstelle wird in Form von Services zur Verfügung gestellt (z.B. REST-Service)

▪ Open, d.h. jeder kann die Schnittstelle verwenden [Ver17, S. 55]

▪ Unterschied zur Conformist-Beziehung

OHS wird explizit mit dem Ziel einer leichten Benutzbarkeit entworfen

▪ Beispiel: Google Maps API

Open Host Service (OHS)

nach [Ver17]

https://developers.google.com/maps/documentation/

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 44

▪ Published Language (PL) = Wohldokumentierte Sprache zum Informations-austausch

[Ver17, S. 56]

▪ Formal spezifiziert, z.B. mittels XML Schema oder JSON Schema

▪ Ziel: Erleichterung einer korrekten Integration bzw. Übersetzung verschiedener

Domänenmodelle

Published Language (PL)

nach [Ver17]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 45

▪ Oft bietet ein Open Host Service seine Schnittstelle in Form einer PL an

▪ Beispiele für Published Languages:

• XJustiz: XML-basiertes Format für elektronischen Rechtsverkehr

(z.B. zwischen Anwälten, Notaren etc.)

• GeoJSON: JSON-basiertes Format zum Austausch geografischer Daten

Published Language (PL) (2)

nach [Ver17]

https://xjustiz.justiz.de/
https://tools.ietf.org/html/rfc7946

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 46

⇒

▪ Situationen:

• Die Unterschiede zwischen den Bounded Contexts sind zu groß (fachlich, technisch,

organisatorisch)

• Der durch eine Integration entstehende Nutzen ist nicht groß genug

⇒ Auf eine Integration wird vollständig verzichtet

Separate Ways

nach [Ver17]

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 47

Context Mappings und Kooperation

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 47

nach: Dan Haywood, An Introduction to Domain Driven Design ,
in: Method & Tools

http://www.methodsandtools.com/archive/archive.php?id=97

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 48

[Mar06] Marinescu F.,AvramA.;Domain-Driven Design Quickly.
Lulu Press; 2006;Kostenloser Download auf InfoQ

[Ver17] Vernon V.; Domain-Driven Design kompakt. dpunkt; 2017

Literaturquellen

https://www.infoq.com/minibooks/domain-driven-design-quickly

Domain-Driven Design

04: Strategisches Design –
Subdomains

Autoren: Prof. Dr. Sabine Sachweh
Unterlagen basieren auf
Folien von
Prof. Dr. Sven Jörges

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 50

▪ Aufteilung des Domänenmodells in sogenannte Bounded

Contexts (begrenzte Kontexte)

▪ Jeder Bounded Context hat ein eigenes Domänenmodell und

seine eigene Ubiquitous Language

▪ Zusammenhänge/Beziehungen zwischen Bounded Contexts

werden mittels Context Maps modelliert

▪ Zusätzliche Strukturierung komplexer Domänen (z.B. bei

Altsystemen) in Subdomains (Teildomänen, Subdomänen)

Strategisches Design

50

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 51

▪ Subdomains dienen der Aufteilung der Domäne in kleinere, beherrschbare Teile

▪ Insbesondere nützlich, wenn der Ausgangspunkt ein Big Ball of Mud ist

(→ Divide and Conquer)

▪ Unterschied zu Bounded Contexts:

• Subdomains dienen der Aufteilung der Domäne im Problemraum

• Bounded Contexts dienen der Aufteilung des Domänenmodells im Lösungsraum

Subdomains

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 52

Subdomains vd. Bounded Contexts

▪ Erstrebenswerter

Idealfall:

1:1-Entsprechung

zwischen Subdomains u.

Bounded Contexts

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 53

▪ Nicht alle Subdomains sind für ein Unternehmen gleich wichtig

▪ DDD definiert eine Klassifikation von Subdomains, um

Fokussierung zu ermöglichen:

1. Core Domain

2. Supporting Subdomain

3. Generic Subdomain

Arten von Subdomains

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 54

▪ Core Domain

• Zentrale Domäne s Alleinstellungsmerkmal des Unternehmens

• Höchste Priorität, höchste Bindung von Ressourcen

• Beispiel "ILIAS": Verwaltung von Lehrveranstaltungen und –materialien

▪ Supporting Subdomain

• Wichtig und notwendig, aber nicht das Kerngeschäft des Unternehmens

• Geringerer Einsatz eigener Ressourcen, ggf. Auslagern per Outsourcing

• Beispiel "ILIAS": Chat-System

Arten von Subdomains

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 55

▪ Generic Subdomain

• Ebenfalls notwendig, aber durch Standardsoftware abdeckbar ("von der Stange")

• Einkaufen, nicht selbst entwickeln

• Beispiel "ILIAS": Authentifikationskomponente

Arten von Subdomains (2)

Softwaretechnik 1(A) Domain-Driven Design ■ ©Prof. Dr. S. Sachweh ■ Folie 56

[Eva03] Evans E.; Domain-Driven Design: Tackling Complexity in the Heart of

Sohware. Addison-Wesley;2003

[Eva14] Evans E.; Domain-Driven Design Reference: Definitions and Pattern
Summaries. Dog Ear Publishing; 2014; Kostenloser Download auf

domainlanguage.com

[Mar06] Marinescu F.,AvramA.;Domain-Driven Design Quickly.

Lulu Press; 2006;Kostenloser Download auf InfoQ

[Ver17] Vernon V.; Domain-Driven Design kompakt. dpunkt; 2017

Literaturquellen (alle)

http://domainlanguage.com/ddd/reference/
https://www.infoq.com/minibooks/domain-driven-design-quickly

www.fh-dortmund.de

