Hilfreiche Erweiterungen

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen

Local-Variable Type Inference

Beispiel

public class TestKlasse {
public static void main(String[] args) {
var var = new Manager ("Bill Gates", 100000.00, 50000.00);

var a = new Angestellter ("Meier", 5000.00);
var b = a;
var ¢ = new Angestellter ("Meier", 5000.00);

Local-Variable Type Inference

Seit Java 10 ist es erlaubt, bei der Deklaration von Variablen anstelle des Typs einfach
nur var zu schreiben.

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 52/295

Local-Variable Type Inference

@ Funktioniert nur in lokalen Scopes, also innerhalb von Methoden oder Blécken
@ Wichtig: Funktioniert nicht bei Klassenvariablen oder Methodenparametern

@ var ist kein neues Keyword!

= Ruickwartskompatibilitat ist also gewahrleistet

= Java bleibt eine streng typisierte Sprache, keine dynamische Typisierung wie in

JavaScript
Beispiel
var var = "a variable named var";

System.out.println (var) ;

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 53/295

Beispiele, was nicht geht ...

Beispiel

var nil = null;

// kompiliert nicht, von null kann kein Typ abgeleitet werden
var uninitialized;

// kompiliert nicht, die Initialisierung muss immer zusammen mit der Deklaration erfolgen
var x = 0, y = 1;

//kompiliert nicht, Mehrfachdeklaration und -initialisierung ist nicht moeglich

Dr. Martin Hirsch Hilfreiche Erweiterungen

Pattern Matching bei instanceof (Vorsicht)

Beispiel

if (obj instanceof Person) {
final Person person = (Person) obj;
// ... Zugriff auf person...

Seit Java 16 durch sog. ,Binding-Variable*

if (obj instanceof Person person) {
// Hier kann man auf die Variable person direkt zugreifen
}
else {
// Hier kein Zugriff auf person
System.out.println (obj.getClass());
}

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 55/295

Generics - Klassen und Methoden

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Idee und Motivation

Idee

Die Grundidee generischer Klassen bzw. Schnittstellen ist es, einzelne Datentypen bei
der Programmierung einer Klasse nicht von vornherein festzulegen.

Beispiel
Speicherung eines Datentriplets (a,b,c) in unterschiedlichen Kontexten:
@ TripletPoint-Klasse
@ TripletRectangel-Klasse
@ TripletString-Klasse
= Generische Klasse, die den Datentyp der zu verwaltenden Daten variabel lasst

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 57/295

Beispiel

public class Triplet<T> { 1mP°Ft java.awt.Poigt;
public T a, b, c; public class TestTriplet {
r r ’ = = - . .
public Triplet (T datal, T data2, T public static void main (String[] args)
data3) t .
{ var tl = new Triplet<>("12", "abc",
w " .
a = datal; oactlE) .
b = data?; var t2 = new Triplet<> (new Point (1,
i data3t 1), new Point (2, 2), new Point
} ! (3, 3));
} }
}
o P = = = 9

Martin Hirsch

Generics - Klassen und Methoden

Wichtig

Generische Klassen und Methoden kénnen nur Objekte verarbeiten
= Nutzung von Wrapper-Klassen bei elementaren Datentypen

Beispiel

var t3 = new Triplet<>(1.0, 2.8, 83.2);
Double tst3 = t3.a;

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

59/295

Deklaration generischer Klassen und Schnittstellen

Konvention

class MyClass<T> {}
class MyDictionary<E, N> {}

T fur Typ, E fur Element, N fr Number, aber auch beliebige GroBbuchstaben mdglich
= Bitte im Praktikum und Klausur verwenden

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 60/295

T kann als Klassenname verwendet werden

Beispiel

public class MyClass<T> {
private T var; // Variable vom Typ T
// Konstruktor, erwartet einen Parameter vom Typ T
public MyClass (T data) {
}
// Methode, gibt ein Ergebnis vom Typ T zurueck
public T calc() {
T result = null;
return result;
}

o F

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Typeinschrankungen

Beispiel (einfach)
class MyClass<T extends Comparable<T>> {...}

Generischer Typ akzeptiert nur Klassen, die von einer Basisklasse abgeleitet werden
bzw. Schnittstellen implementieren (hier Schnittstelle Comparable<T>)

Beispiel (mehrfach)
class MyPolygon <T extends Point & Comparable > {...}

Auch mehrere Typeinschrankungen sind moglich.
Immer zuerst die Basisklasse angeben, dann die Schnittstelle.

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 62/295

Generische Schnittstellen und Vererbung

Interfaces

interface MyInterface<T> {...}

Serializable{...}

Es gelten dieselben Vererbungsregeln wie fir normale Klassen

public class HashMap<K, V> extends AbstractMap <K, V> implements Map<K, V>,

Cloneable,

o =l = = QR
Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Deklaration generischer Methoden

Auch in nicht-generischen Klassen mdglich
@ Einschrankung des Typ mdglich (extend)
@ Typparameter muss vor Rickgabewert bzw. void angegeben werden
@ Ruckgabewert kann auch generisch sein

@ Beim Konstruktor wird der generische Typ direkt vor dem Methodennamen
angegeben

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 64/295

Generische Methode

Beispiel

public class TestGenericMethods {
public static void main(String[] args) {
String s = max("abc", "efg");
Integer n = max (123, 456);
System.out.println(s);
System.out.println (n);
}
public static <T extends Comparable<T>> T max(T a, T b) {
if (a.compareTo(b) > 0)
return a;
else
return b;

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

65/295

Ok?

Beispiel

var tl = new Triplet<>("12",

llabcll, "“.");
var t2 = new Triplet<>(new Point(l, 1), new Point (2, 2), new Point (3, 3));
var t3 = new Triplet<>(1.0, 2.8, 83.2);

outputTriplet (tl);

outputTriplet (t2);

outputTriplet (t3);
}

public static void outputTriplet (Triplet<String> t)

{
System.out.format ("[%s, %s, %s]l\n", t.a, t.b, t.c);
}

=} = = = =
Martin Hirsch Generics - Klassen und Methoden

Weil ...

Problem
Explizite Angabe des Typs bedeutet Verlust der Flexibilitat

public static void outputTriplet (Triplet<String> t) {

Problem
Generische Typinformation gehen beim Kompilieren verloren. Daher nicht erlaubt:

public static void outputTriplet (Triplet<String> t) {
System.out.format ("[%s, %s, %s]l\n", t.a, t.b, t.c);

}

public static void outputTriplet (Triplet<Integer> t) {
System.out.format ("[%s, %s, %sl\n", t.a, t.b, t.c);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

67/295

Wildcard-Parameter

Lésung

public static void outputTriplet (Triplet<?> t) {
System.out.format ("[%s, %s, %s]l\n", t.a, t.b, t.c);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Neues Problem

Wildcards mit Regeln
@ GroBe Freiheit durch Wildcard-Parameter
@ Problem: Methoden missen mit jedem denkbaren generischen Typ zurechtkommen

v

Wildcards einschranken durch
@ Upper Bounded Wildcards
@ Lower Bounded Wildcards

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 69/295

Upper Bounded Wildcards
Syntax

<? extends Xxx>

Nur Typen, die der Klasse Xxx bzw. der Schnittstelle Xxx entsprechen

Beispiel
MyClass<? extends A>

Nur Typen der Klasse A bzw. davon abgeleiteten Klassen

Beispiel
MyClass<? extends Comparable<?>>

Klassen, welche die generische Schnittstelle Comparable implementieren

v

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

70/295

Lower Bounded Wildcards

Syntax
<? super Xxx>

Als Datentyp nur Xxx sowie deren Basisklassen

Beispiel
MyClass<? super Double>

Nur Typ Double sowie allgemeiner (Number, Object)

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 71/295

Beispiel

Methode zur Berechnung der Summe eines Triplets mit dem Typ Double, Integer,
BigDecimal

public static double sumTriplet (Triplet<? extends Number> t) {
return t.a.doubleValue() + t.b.doubleValue() + t.c.doubleValue();
}

=} = = = 1PN G4
Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Beispiel

Methode zur Veranderung der Triplet-Werte mit dem Typ Double, Number, Object

public static void changeTriplet (Triplet<? super Double> t, Double x) {

t.a = x;
t.b = x * x;
t.c =

X * X * X;

}

=} = = = 1PN G4
Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Arrays

Nicht erlaubt

obj = new Classname<?>

Aber: Erzeugung eines Arrays zur Speicherung von Objekten einer Klasse mit
unterschiedlichen Typen zulassig

Triplet<?> trip = new Triplet<?>[3];

trip[0] = new Triplet<>("1", "2", "x");
trip[l] = new Triplet<> (new Point (0, 0)), new Point(l, 1), new Point (1, 2));
trip[2] = new Triplet<> (1.2, 2.7, Mathi.PI);

for (var t: trip)
outputTriplet (t)

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 74/295

Generics-Beispiel zu Comparable

Ubung

Alle Objekte der Geometrie-Schnittstelle (siehe letzte Praktikumsaufgabe sollen
verglichen und sortiert werden)

= Nutzung der Comparable-Schnittstelle

public interface Comparable<T> {
public int compareTo (T obj);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 75/295

Lésung

Erweiterung Interface

public interface Geometrie extends
Comparable<Geometrie>{
double berechneUmfang () ;
double berechneFlaeche () ;

Klasse Kreis

@Override

public int compareTo (Geometrie other)

double flaecheThis = this.
berechneFlaeche () ;

double flaecheOther other.
berechneFlaeche () ;
if (flaecheThis == flaecheOther)
return 0;
else if (flaecheThis > flaecheOther)
return 1;
else

return -1;

{

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

76/295

Lésung

Rechteck

QOverride
public int compareTo (Geometrie other)
return Double.compare (this.
berechneFlaeche (), other.
berechneFlaeche());

{

Main

Arrays.sort (geos) ;
for (Geometrie g : geos) {
System.out.println("Flaeche:" + g.
berechneFlaeche()) ;

Martin Hirsch Generics - Klassen und Methoden

Comparable versus Comparator

}

flexibler Vergleich, keine Festlegung auf EIN Sortierkiterium
@Override
1)

Arrays.sort (geos, new Comparator<Geometrie> () {
public int compare (Geometrie gl,
return ((Double)

Geometrie g2)

{
gl.berechneUmfang ()) .compareTo (g2.berechneUmfang()) ;

=) = = = ©»HAC
Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

Zusammenfassung

@ Generics zur Definition von Klassen, bei denen der Typ von manchen Feldern
variieren kann.

@ Generics kdnnen auch in Interfaces auftreten (vgl. Collection Framework)
@ Einschrankung von generischen Typen

@ Comparable Interface zur Definition von Methoden und Klassen, bei denen die Typen
generisch sind, aber eine Vergleichsoperation verwendet werden soll.

@ Comparable ist oft eine Vorbedingung im Collection Framework.

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 79/295

Theorie

Kovarianz, Kontravarianz, Invarianz
@ Kovarianz und Kontravarianz ist die von Typen abh&ngige Kompatibilitat

@ Ein von T abhangiges A(T1) ist kovariant, wenn aus der Kompatibilitét
von T1 zu T2 die (Typ)Kompatibilitdt von A(T1) zu A(T2) folgt

@ Wenn aus der Kompatibilitdt von 71 zu T2 die Kompatibilitat
von A(T2) zu A(T1) folgt, dann ist der Typ A(T) kontravariant

@ Wenn aus der Kompatibilitédt von T1 zu T2 keine Kompatibilitat
zwischen A(T1) und A(T2) folgt, dann ist A(T) invariant

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 80/295

Theorie

Kovarianz bei Arrays
Weil Arrays kovariant sind und Integer von Number abgeleitet ist, ist Integer[] eine
Ableitung von Number]

Number[] a = new Integer[2];
a[0] = new Integer(1);
all] = new Double(3.14); //Laufzeitfehler

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 81/295

Theorie

Invarianz bei Arrays

@ Obwohl Integer von Number abgeleitet ist, ist ArrayList<Integer> keine Ableitung
von ArrayList<Number>

ArrayList<Number> a = new ArrayList<Integer>(); //Kompilierfehler

@ Die Ableitungsbeziehung zwischen Typargumenten Ubertragt sich nicht auf
generische Klassen, es gibt keine Kovarianz bei Generics.
= Typsicher bei Generics gewahrleistet, anders als bei Arrays
= Mehr nach der Vorlesung zu Collections

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 82/295

Theorie

Wie werden Generics ,lbersetzt"
@ Java-Compiler Ubersetzt Generics direkt in Bytecode durch ,type erasure®

@ Bei der Ubersetzung per Type Erasure werden die Typparameter eines Typs oder
einer Methode entfernt, so dass zur Laufzeit parametrisierte Typen nicht mehr von
regularen Typen unterschieden werden kénnen

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 83/295

Wie werden Generics ,Ubersetzt”
Original

public class Box<T> {
private T contents;
public Box (T cont) {
contents = cont;}
public T getContents() {
return contents;}
public void setContents (T o) {
contents = 0;}
public static void main (String[]
{
Box<String> b = new Box<String> ("
Apple");
String s = b.getContents();
System.out.println(s);
Box<Integer> bl = new Box<Integer> (
new Integer(3));
int i = bl.getContents();
System.out.println(i); }}

args)

Type Erasure

public class BoxWG {

private Object contents;

public BoxWG (Object cont) {
contents = cont;

}

public Object getContents() {
return contents;

}

public void setContents (Object o) {
contents = o;

}

public static void main (Stringl[]

{

BoxWG b = new BoxWG ("Apple");
String s = (String)b.getContents () ;
System.out.println(s);}}

args)

V.
Prof. Dr. Martin Hirsch Generics - Klassen und Methoden

84/295

	Organisation
	Allgemein
	Literatur

	Literatur
	Literatur
	Literatur
	Java
	Einstieg Java - Pitfalls
	Wiederholung Java
	Exkurs: Arten von Klasse
	Hilfreiche Erweiterungen

	Generics - Klassen und Methoden
	Grundlagen
	Wildcards
	Kovarianz, Kontravarianz, Invarianz

	Exceptions
	Java Fehlerbehandlung
	Assertions

	Lambda–Ausdrücke
	Lambda Allgemein
	Entstehungsgeschichte Defaultmethoden

	Collections
	Motivation
	Das Collection-Framework
	Probleme bei Collection
	Map-Schnittstelle

	Streams
	Dateien und Verzeichnisse
	Serialisierung
	Parallelprogrammierung in Java
	Threads
	Das Concurrent-Paket

	JavaFX
	Grundlagen JavaFX
	Properties und Bindings

	scala
	Einführung in Scala
	Funktionale Programmierung mit LISP
	Scala

	Funktionale Programmierung in Scala

	C
	Einführung in C

