
Hilfreiche Erweiterungen

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 51 / 295



Local-Variable Type Inference

Beispiel

public class TestKlasse {
public static void main(String[] args) {

var var = new Manager("Bill Gates", 100000.00, 50000.00);
var a = new Angestellter("Meier", 5000.00);
var b = a;
var c = new Angestellter("Meier", 5000.00);

Local-Variable Type Inference
Seit Java 10 ist es erlaubt, bei der Deklaration von Variablen anstelle des Typs einfach
nur var zu schreiben.

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 52 / 295



Local-Variable Type Inference

Funktioniert nur in lokalen Scopes, also innerhalb von Methoden oder Blöcken
Wichtig: Funktioniert nicht bei Klassenvariablen oder Methodenparametern
var ist kein neues Keyword!

) Rückwärtskompatibilität ist also gewährleistet
) Java bleibt eine streng typisierte Sprache, keine dynamische Typisierung wie in

JavaScript

Beispiel

var var = "a variable named var";
System.out.println(var);

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 53 / 295



Beispiele, was nicht geht ...

Beispiel

var nil = null;
// kompiliert nicht, von null kann kein Typ abgeleitet werden
var uninitialized;
// kompiliert nicht, die Initialisierung muss immer zusammen mit der Deklaration erfolgen
var x = 0, y = 1;
//kompiliert nicht, Mehrfachdeklaration und -initialisierung ist nicht moeglich

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 54 / 295



Pattern Matching bei instanceof (Vorsicht)

Beispiel

if (obj instanceof Person) {
final Person person = (Person) obj;
// ... Zugriff auf person...

}

Seit Java 16 durch sog. „Binding-Variable“

if (obj instanceof Person person) {
// Hier kann man auf die Variable person direkt zugreifen

}
else {
// Hier kein Zugriff auf person
System.out.println(obj.getClass());

}

Prof. Dr. Martin Hirsch Hilfreiche Erweiterungen 55 / 295



Generics - Klassen und Methoden

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 56 / 295



Idee und Motivation

Idee
Die Grundidee generischer Klassen bzw. Schnittstellen ist es, einzelne Datentypen bei
der Programmierung einer Klasse nicht von vornherein festzulegen.

Beispiel
Speicherung eines Datentriplets (a,b,c) in unterschiedlichen Kontexten:

TripletPoint-Klasse
TripletRectangel-Klasse
TripletString-Klasse

) Generische Klasse, die den Datentyp der zu verwaltenden Daten variabel lässt

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 57 / 295



Beispiel

public class Triplet<T> {
public T a, b, c;
public Triplet(T data1, T data2, T

data3)
{
a = data1;
b = data2;
c = data3;

}
}

import java.awt.Point;
public class TestTriplet {
public static void main(String[] args)
{
var t1 = new Triplet<>("12", "abc",

"...");
var t2 = new Triplet<>(new Point(1,

1), new Point(2, 2), new Point
(3, 3));

}
}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 58 / 295



Wichtig

Generische Klassen und Methoden können nur Objekte verarbeiten
) Nutzung von Wrapper-Klassen bei elementaren Datentypen

Beispiel

var t3 = new Triplet<>(1.0, 2.8, 83.2);
Double tst3 = t3.a;

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 59 / 295



Deklaration generischer Klassen und Schnittstellen

Konvention

class MyClass<T> {}
class MyDictionary<E, N> {}

T für Typ, E für Element, N für Number, aber auch beliebige Großbuchstaben möglich
) Bitte im Praktikum und Klausur verwenden

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 60 / 295



T kann als Klassenname verwendet werden

Beispiel

public class MyClass<T> {
private T var; // Variable vom Typ T
// Konstruktor, erwartet einen Parameter vom Typ T
public MyClass(T data) {
}
// Methode, gibt ein Ergebnis vom Typ T zurueck
public T calc(){

T result = null;
return result;

}
}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 61 / 295



Typeinschränkungen

Beispiel (einfach)

class MyClass<T extends Comparable<T>> {...}

Generischer Typ akzeptiert nur Klassen, die von einer Basisklasse abgeleitet werden
bzw. Schnittstellen implementieren (hier Schnittstelle Comparable<T>)

Beispiel (mehrfach)

class MyPolygon <T extends Point & Comparable > {...}

Auch mehrere Typeinschränkungen sind möglich.
Immer zuerst die Basisklasse angeben, dann die Schnittstelle.

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 62 / 295



Generische Schnittstellen und Vererbung

Interfaces

interface MyInterface<T> {...}

Es gelten dieselben Vererbungsregeln wie für normale Klassen

public class HashMap<K, V> extends AbstractMap <K, V> implements Map<K, V>, Cloneable,
Serializable{...}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 63 / 295



Deklaration generischer Methoden

Auch in nicht-generischen Klassen möglich
Einschränkung des Typ möglich (extend)
Typparameter muss vor Rückgabewert bzw. void angegeben werden
Rückgabewert kann auch generisch sein
Beim Konstruktor wird der generische Typ direkt vor dem Methodennamen
angegeben

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 64 / 295



Generische Methode

Beispiel

public class TestGenericMethods {
public static void main(String[] args) {

String s = max("abc", "efg");
Integer n = max(123, 456);
System.out.println(s);
System.out.println(n);

}
public static <T extends Comparable<T>> T max(T a, T b) {

if (a.compareTo(b) > 0)
return a;

else
return b;

}
}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 65 / 295



Ok?

Beispiel

var t1 = new Triplet<>("12", "abc", "...");
var t2 = new Triplet<>(new Point(1, 1), new Point(2, 2), new Point(3, 3));
var t3 = new Triplet<>(1.0, 2.8, 83.2);
outputTriplet(t1);
outputTriplet(t2);
outputTriplet(t3);

}
public static void outputTriplet(Triplet<String> t) {
System.out.format("[%s, %s, %s]\n", t.a, t.b, t.c);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 66 / 295



Weil ...

Problem
Explizite Angabe des Typs bedeutet Verlust der Flexibilität
public static void outputTriplet(Triplet<String> t) {

Problem
Generische Typinformation gehen beim Kompilieren verloren. Daher nicht erlaubt:
public static void outputTriplet(Triplet<String> t) {
System.out.format("[%s, %s, %s]\n", t.a, t.b, t.c);

}
public static void outputTriplet(Triplet<Integer> t) {
System.out.format("[%s, %s, %s]\n", t.a, t.b, t.c);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 67 / 295



Wildcard-Parameter

Lösung

public static void outputTriplet(Triplet<?> t) {
System.out.format("[%s, %s, %s]\n", t.a, t.b, t.c);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 68 / 295



Neues Problem

Wildcards mit Regeln
Große Freiheit durch Wildcard-Parameter
Problem: Methoden müssen mit jedem denkbaren generischen Typ zurechtkommen

Wildcards einschränken durch
Upper Bounded Wildcards
Lower Bounded Wildcards

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 69 / 295



Upper Bounded Wildcards

Syntax

<? extends Xxx>

Nur Typen, die der Klasse Xxx bzw. der Schnittstelle Xxx entsprechen

Beispiel

MyClass<? extends A>

Nur Typen der Klasse A bzw. davon abgeleiteten Klassen

Beispiel

MyClass<? extends Comparable<?>>

Klassen, welche die generische Schnittstelle Comparable implementieren

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 70 / 295



Lower Bounded Wildcards

Syntax

<? super Xxx>

Als Datentyp nur Xxx sowie deren Basisklassen

Beispiel

MyClass<? super Double>

Nur Typ Double sowie allgemeiner (Number, Object)

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 71 / 295



Beispiel

Methode zur Berechnung der Summe eines Triplets mit dem Typ Double, Integer,
BigDecimal

public static double sumTriplet(Triplet<? extends Number> t) {
return t.a.doubleValue() + t.b.doubleValue() + t.c.doubleValue();

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 72 / 295



Beispiel

Methode zur Veränderung der Triplet-Werte mit dem Typ Double, Number, Object

public static void changeTriplet(Triplet<? super Double> t, Double x) {
t.a = x;
t.b = x * x;
t.c = x * x * x;

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 73 / 295



Arrays

Nicht erlaubt

obj = new Classname<?>

Aber: Erzeugung eines Arrays zur Speicherung von Objekten einer Klasse mit
unterschiedlichen Typen zulässig

Triplet<?> trip = new Triplet<?>[3];
trip[0] = new Triplet<>("1", "2", "x");
trip[1] = new Triplet<>(new Point(0, 0)), new Point(1, 1), new Point(1, 2));
trip[2] = new Triplet<>(1.2, 2.7, Mathi.PI);
for (var t: trip)
outputTriplet(t)

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 74 / 295



Generics-Beispiel zu Comparable

Übung
Alle Objekte der Geometrie-Schnittstelle (siehe letzte Praktikumsaufgabe sollen
verglichen und sortiert werden)
) Nutzung der Comparable-Schnittstelle
public interface Comparable<T> {
public int compareTo(T obj);

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 75 / 295



Lösung

Erweiterung Interface

public interface Geometrie extends
Comparable<Geometrie>{

double berechneUmfang();
double berechneFlaeche();

}

Klasse Kreis

@Override
public int compareTo(Geometrie other) {
double flaecheThis = this.

berechneFlaeche();
double flaecheOther = other.

berechneFlaeche();
if(flaecheThis == flaecheOther)
return 0;

else if(flaecheThis > flaecheOther)
return 1;

else
return -1;

}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 76 / 295



Lösung

Rechteck

@Override
public int compareTo(Geometrie other) {
return Double.compare(this.

berechneFlaeche(), other.
berechneFlaeche());

}

Main

Arrays.sort(geos);
for (Geometrie g : geos) {
System.out.println("Flaeche:" + g.

berechneFlaeche());
}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 77 / 295



Comparable versus Comparator

flexibler Vergleich, keine Festlegung auf EIN Sortierkiterium

Arrays.sort(geos, new Comparator<Geometrie>() {
@Override
public int compare(Geometrie g1, Geometrie g2) {

return ((Double) g1.berechneUmfang()).compareTo(g2.berechneUmfang());
}

});

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 78 / 295



Zusammenfassung

Generics zur Definition von Klassen, bei denen der Typ von manchen Feldern
variieren kann.
Generics können auch in Interfaces auftreten (vgl. Collection Framework)
Einschränkung von generischen Typen
Comparable Interface zur Definition von Methoden und Klassen, bei denen die Typen
generisch sind, aber eine Vergleichsoperation verwendet werden soll.
Comparable ist oft eine Vorbedingung im Collection Framework.

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 79 / 295



Theorie

Kovarianz, Kontravarianz, Invarianz
Kovarianz und Kontravarianz ist die von Typen abhängige Kompatibilität
Ein von T abhängiges A(T1) ist kovariant, wenn aus der Kompatibilität
von T1 zu T2 die (Typ)Kompatibilität von A(T1) zu A(T 2) folgt
Wenn aus der Kompatibilität von T 1 zu T 2 die Kompatibilität
von A(T 2) zu A(T1) folgt, dann ist der Typ A(T ) kontravariant
Wenn aus der Kompatibilität von T 1 zu T 2 keine Kompatibilität
zwischen A(T 1) und A(T 2) folgt, dann ist A(T ) invariant

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 80 / 295



Theorie

Kovarianz bei Arrays
Weil Arrays kovariant sind und Integer von Number abgeleitet ist, ist Integer[] eine
Ableitung von Number[]
Number[] a = new Integer[2];
a[0] = new Integer( 1 );
a[1] = new Double( 3.14 ); //Laufzeitfehler

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 81 / 295



Theorie

Invarianz bei Arrays
Obwohl Integer von Number abgeleitet ist, ist ArrayList<Integer> keine Ableitung
von ArrayList<Number>
ArrayList<Number> a = new ArrayList<Integer>(); //Kompilierfehler

Die Ableitungsbeziehung zwischen Typargumenten überträgt sich nicht auf
generische Klassen, es gibt keine Kovarianz bei Generics.
) Typsicher bei Generics gewährleistet, anders als bei Arrays
) Mehr nach der Vorlesung zu Collections

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 82 / 295



Theorie

Wie werden Generics „übersetzt“
Java-Compiler übersetzt Generics direkt in Bytecode durch „type erasure“
Bei der Übersetzung per Type Erasure werden die Typparameter eines Typs oder
einer Methode entfernt, so dass zur Laufzeit parametrisierte Typen nicht mehr von
regulären Typen unterschieden werden können

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 83 / 295



Wie werden Generics „übersetzt“
Original

public class Box<T> {
private T contents;
public Box(T cont) {
contents = cont;}

public T getContents() {
return contents;}

public void setContents(T o) {
contents = o;}

public static void main(String[] args)
{

Box<String> b = new Box<String>("
Apple");

String s = b.getContents();
System.out.println(s);
Box<Integer> b1 = new Box<Integer>(

new Integer(3));
int i = b1.getContents();
System.out.println(i);}}

Type Erasure

public class BoxWG {
private Object contents;
public BoxWG(Object cont) {
contents = cont;

}
public Object getContents() {
return contents;

}
public void setContents(Object o) {
contents = o;

}
public static void main(String[] args)

{
BoxWG b = new BoxWG("Apple");
String s = (String)b.getContents();
System.out.println(s);}}

Prof. Dr. Martin Hirsch Generics - Klassen und Methoden 84 / 295


	Organisation
	Allgemein
	Literatur

	Literatur
	Literatur
	Literatur
	Java
	Einstieg Java - Pitfalls 
	Wiederholung Java
	Exkurs: Arten von Klasse
	Hilfreiche Erweiterungen

	Generics - Klassen und Methoden
	Grundlagen
	Wildcards
	Kovarianz, Kontravarianz, Invarianz

	Exceptions
	Java Fehlerbehandlung
	Assertions

	Lambda–Ausdrücke
	Lambda Allgemein
	Entstehungsgeschichte Defaultmethoden

	Collections
	Motivation
	Das Collection-Framework
	Probleme bei Collection
	Map-Schnittstelle

	Streams
	Dateien und Verzeichnisse
	Serialisierung
	Parallelprogrammierung in Java
	Threads
	Das Concurrent-Paket

	JavaFX
	Grundlagen JavaFX
	Properties und Bindings


	scala
	Einführung in Scala
	Funktionale Programmierung mit LISP
	Scala

	Funktionale Programmierung in Scala

	C
	Einführung in C


