

# **Data Science**

focus

1. Exercise / Practical

## Theoretical Exercises

### **Excercise 1.1:** (Theoretical) Distinguishing between data types

Consider the following data set about sales prices in Ames (USA). The presented data is part of a larger dataset <sup>a</sup>:

| Lot Area | NBHD    | Type   | Qual | Cond | Built | 1st Flr over Lot Area | 1st Flr SF | Mo Sold | SalePrice |
|----------|---------|--------|------|------|-------|-----------------------|------------|---------|-----------|
| 11160    | NAmes   | 1Fam   | 7    | 5    | 1968  | 0,19                  | 2110       | 4.2010  | 244000    |
| 4920     | StoneBr | TwnhsE | 8    | 5    | 2001  | 0,27                  | 1338       | 4.2010  | 213500    |
| 7500     | Gilbert | 1Fam   | 7    | 5    | 1999  | 0,14                  | 1028       | 6.2010  | 189000    |
| 7980     | Gilbert | 1Fam   | 6    | 7    | 1992  | 0,15                  | 1187       | 3.2010  | 185000    |
| 12537    | NAmes   | 1Fam   | 5    | 6    | 1971  | 0,09                  | 1078       | 4.2010  | 149900    |
| 1680     | BrDale  | Twnhs  | 5    | 5    | 1971  | 0,31                  | 525        | 3.2010  | 105500    |
| 2280     | NPkVill | Twnhs  | 7    | 6    | 1975  | 0,37                  | 836        | 6.2010  | 120000    |
| 11520    | NridgHt | 1Fam   | 9    | 5    | 2005  | 0,15                  | 1698       | 6.2010  | 275000    |
| 10171    | NridgHt | 1Fam   | 7    | 5    | 2004  | 0,15                  | 1535       | 3.2010  | 214000    |
| 7132     | NridgHt | TwnhsE | 8    | 5    | 2006  | 0,19                  | 1370       | 4.2010  | 205000    |
| 3203     | Blmngtn | TwnhsE | 7    | 5    | 2006  | 0,36                  | 1145       | 1.2010  | 160000    |
| 13300    | Gilbert | 1Fam   | 7    | 5    | 2004  | 0,06                  | 744        | 6.2010  | 184500    |

- a) Discuss, based on the given data, what is basic population, sample, statistical unit, variable and value?
- b) Decide for every variable to which data category its values belong to.

**Hint:** It could be helpful to do some research work.

#### **Excercise 1.2: (Theoretical) Comparison CSV and JSON**

Compare the data interchange formats CSV and JSON regarding the following categories:

- a) Readability and simpleness for human
- b) Support of hierarchical data structures
- c) Efficiency in file-size of larger data

 $<sup>^</sup>a \verb|https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data|$ 



# **Data Science**

focus on students

1. Exercise / Practical

### Excercise 1.3: (Theoretical) Problems of sales data

Consider the following situation: You are investigating a dataset containing global sales data of a company. The dataset contains information on the goods, prices, dates etc.

- a) Discuss at least three potential problems, this dataset could have.
- b) How could these problems be addressed to raise the trust in the data? Which dimension of data quality do these problems adress?

### **Practical Exercises**

### **Excercise 1.4: (Practical) CSV to JSON**

You can find a CSV file in the Ilias course room called *AmesHousing.csv*. Your task is to transform the CSV file to the JSON format. For this, create a program which does the following:

- a) Loading the data into a proper structure, e.g. list of lists.
- b) Transform it into a structure similar to a JSON file, e.g. list of dictionary.
- c) Save the transformed data into a ISON file.

**Hint:** You should parse the file yourself, i.e. you are not allowed to use built-in libraries which parse CSV files.

#### **Excercise 1.5: (Practical) Pandas**

Consider the CSV file from the previous exercise. Use a library to load the data and print a summary of it.

**Hint:** A widely used library for working with data in Python is pandas: https://pandas.pydata.org