

Data Science

focus on students

11. Exercise / Practical

Theoretical Exercises

Excercise 11.1: (Theoretical) Decision Tree^a

We want to predict the risk class of car driver based on the attributes time (years the driver has a license), gender and area (type of area the driver lives in):

	time	gender	area	risk
1	1-2	m	urban	low
2	2-7	m	rural	high
3	> 7	f	rural	low
4	1-2	f	rural	high
5	> 7	m	rural	high
6	1-2	m	rural	high
7	2-7	f	urban	low
8	2-7	m	urban	low

- a) Created a decision tree based classified with the method given in the lecture
- b) Apply the decision tree classifier on the following data

	time	gender	area
Α	1-2	f	rural
В	2-7	m	urban
C	1-2	f	urban

Practical Exercises

 $[^]a \verb|https://www.dbs.ifi.lmu.de/Lehre/KDD/WS1819/tutorials/exercise_12.pdf|$

Data Science11. Exercise / Practical

focus on students

11. Exercise / Practical

Excercise 11.2: (Practical) Ames Housing Classification

We consider the Ames Housing dataset and want to predict the SalePrice as classes (cheap, expensive) based on the given variables.

- a) Prepare the data for a machine learning model by
 - compute the new variables "years since built" and "years since remod/add"
 - categorize the values for SalePrice in cheap (0 160000) and expensive (160000 ∞)
 - analyze all variables and add classes "other" for values with few occurrences
 - remove unneeded variables and variables with extreme imbalanced data (e.g. 2 classes, one with 99% of the data and the other with 1% of the data)
- b) Create a train / test splitting
- c) Create a decision tree classifier
- d) Analyze the quality of the classifier by computing the different measures given in lecture
- e) Train different versions of the classifier (by varying the parameters) and compare these

Hint: A decision tree classifier can be created with sklearn: https://scikit-learn.org/1.5/modules/generated/sklearn.tree.DecisionTreeClassifier.html