# Communications and Computer Networks

Prof. Dr. Daniel Spiekermann ccn@fh-dortmund.de

Summer term 2023

### Exercise 4

**Information:** If necessary, remove the suffix *.sec* of files downloaded from ILIAS.

#### 1 IPv4

1. Sketch the individual fields of an IPv4 datagram and explain their meaning.

2. You have the following bit stream in the network

```
5c 49 79 8e 23 a3 5c e9 1e ae 7c ef 08 00 45 00 00 54 a8 ac 00 00 40 01 35 d0 c0 a8 0a 51 c1 19 10 1a 08 00 44 a6 2e 1c 00 03 64 4b cf d7 00 0a 66 0a 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37
```

Interpret the blue marked hex code.

| Why is th | ne maximum packet size of an ipv4-packet is 65.535?                          |
|-----------|------------------------------------------------------------------------------|
|           |                                                                              |
|           |                                                                              |
| You see a | n IHL value of 10. How long is the header? What is a reason for this length? |
|           |                                                                              |
| -         |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |
|           |                                                                              |

## 2 Adressing

- 5. Calculate the network address, broadcast address and address range for the hosts and the number of usable host addresses of the following addresses:
  - 10.0.3.0/8
  - 10.0.3.7/19
  - 171.13.9.47/28
  - 88.94.0.0/21
  - 66.91.119.8/30

### 3 Fragmentation

| 6. | An ICMP Ech     | o Reply packet with | 12000 bytes of | user data is sent | over a standard Ethernet ( | MTU  |
|----|-----------------|---------------------|----------------|-------------------|----------------------------|------|
|    | = 1500  bytes). | What is the size of | the associated | l Ethernet frames | (including preamble and FC | CS)? |

7. Assume you want to transfer a icmp packet with a size of 5800 bytes. Fill in the relevant value in the following fields:

| Packet no | Length | DF | MF | Offset | proto |
|-----------|--------|----|----|--------|-------|
|           |        |    |    |        |       |
| Packet no | Length | DF | MF | Offset | proto |
| -         |        |    |    |        |       |
| Packet no | Length | DF | MF | Offset | proto |
|           |        |    |    |        |       |
| Packet no | Length | DF | MF | Offset | proto |
|           |        |    |    |        |       |
| Packet no | Length | DF | MF | Offset | proto |
|           |        |    |    |        |       |
| Packet no | Length | DF | MF | Offset | proto |
|           |        |    |    |        |       |

#### 4 ICMP

8. Reconstruct the path of your host to

- www.google.coom
- www.dortmund.de
- www.wireshark.org

What is striking?

9. The data packets of a network trace with *Wireshark* are shown below. Which command was used to generate the traffic? Also include any command options that were used.

```
Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface en0, id 0 Ethernet II, Src: Apple_ae:7c:ef (5c:e9:1e:ae:7c:ef), Dst: Broadcast (ff:ff:ff:ff:ff) Address Resolution Protocol (request)
```

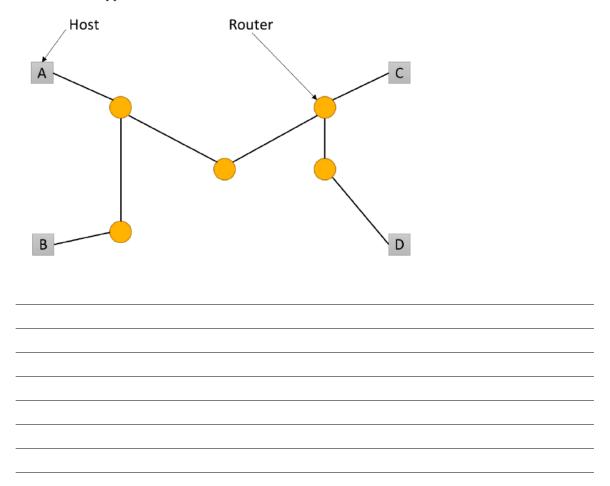
```
Frame 2: 42 bytes on wire (336 bits), 42 bytes captured (336 bits) on interface en0, id 0 Ethernet II, Src: Raspberr_a1:c6:18 (b8:27:eb:a1:c6:18), Dst: Apple_ae:7c:ef (5c:e9:1e:ae:7c:ef) Address Resolution Protocol (reply)
```

```
Frame 3: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface en0, id 0 Ethernet II, Src: Apple_ae:7c:ef (5c:e9:1e:ae:7c:ef), Dst: Raspberr_a1:c6:18 (b8:27:eb:a1:c6:18) Internet Protocol Version 4, Src: 192.168.10.81, Dst: 192.168.10.76 Data (1480 bytes)
```

```
Frame 4: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface en0, id 0 Ethernet II, Src: Apple_ae:7c:ef (5c:e9:1e:ae:7c:ef), Dst: Raspberr_a1:c6:18 (b8:27:eb:a1:c6:18) Internet Protocol Version 4, Src: 192.168.10.81, Dst: 192.168.10.76 Internet Control Message Protocol
```

Frame 5: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface en0, id 0 Ethernet II, Src: Raspberr\_a1:c6:18 (b8:27:eb:a1:c6:18), Dst: Apple\_ae:7c:ef (5c:e9:1e:ae:7c:ef) Internet Protocol Version 4, Src: 192.168.10.76, Dst: 192.168.10.81 Data (1480 bytes)

Frame 6: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface en0, id 0 Ethernet II, Src: Raspberr\_a1:c6:18 (b8:27:eb:a1:c6:18), Dst: Apple\_ae:7c:ef (5c:e9:1e:ae:7c:ef) Internet Protocol Version 4, Src: 192.168.10.76, Dst: 192.168.10.81 Internet Control Message Protocol


Frame 7: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface en0, id 0 Ethernet II, Src: Apple\_ae:7c:ef (5c:e9:1e:ae:7c:ef), Dst: Raspberr\_a1:c6:18 (b8:27:eb:a1:c6:18) Internet Protocol Version 4, Src: 192.168.10.81, Dst: 192.168.10.76 Data (1480 bytes)

Frame 8: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface en0, id 0 Ethernet II, Src: Apple\_ae:7c:ef (5c:e9:1e:ae:7c:ef), Dst: Raspberr\_a1:c6:18 (b8:27:eb:a1:c6:18) Internet Protocol Version 4, Src: 192.168.10.81, Dst: 192.168.10.76 Internet Control Message Protocol

Frame 9: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface en0, id 0 Ethernet II, Src: Raspberr\_a1:c6:18 (b8:27:eb:a1:c6:18), Dst: Apple\_ae:7c:ef (5c:e9:1e:ae:7c:ef) Internet Protocol Version 4, Src: 192.168.10.76, Dst: 192.168.10.81 Data (1480 bytes)

Frame 10: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) on interface en0, id 0 Ethernet II, Src: Raspberr\_a1:c6:18 (b8:27:eb:a1:c6:18), Dst: Apple\_ae:7c:ef (5c:e9:1e:ae:7c:ef) Internet Protocol Version 4, Src: 192.168.10.76, Dst: 192.168.10.81 Internet Control Message Protocol

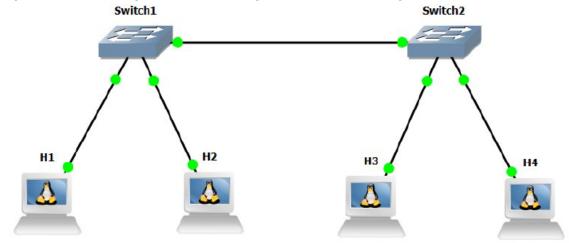
10. The figure below shows a network with multiple routers (yellow circles) and hosts A, B, C and D. Determine the minimum required TTL for IPv4 communication between A-B, A-C, A-D and B-D. What would happen if the TTL is too small?



#### 5 IPv6

| 1. \$ | Sketch the individual fields of an IPv6 datagram and explain their meaning. |
|-------|-----------------------------------------------------------------------------|
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
|       |                                                                             |
| 2. (  | Calculate the address range of the following addresses:                     |
|       | • fe80::/10                                                                 |
|       | • 2001:3211:7600:9/48                                                       |
|       | • 2001:AABB:4000::0312:6641/28                                              |
|       |                                                                             |
| _     |                                                                             |
| _     |                                                                             |
|       |                                                                             |
|       |                                                                             |
| -     |                                                                             |
| -     |                                                                             |
| -     |                                                                             |
| -     |                                                                             |
| -     |                                                                             |
| -     |                                                                             |
| -     |                                                                             |
| _     |                                                                             |

- 13. Assign cases A G to the given IPv6 prefixes/addresses:
  - A: IPv6-Multicast- Address
  - $\bullet\,$  B: IPv6-Link-Local- Address
  - $\bullet$  C: Ipv6-Global-Unicast- Address
  - $\bullet\,$  D: IPv6-Loopback-Address
  - $\bullet\,$  E: IPv6-Unique Local Unicast- Address


|     | <ul> <li>F: IPv6 embedded IPv4 Address</li> <li>G: Unspecified Address</li> <li>H: Reserved</li> </ul>                                                                                                                  |           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | <ul> <li>2001:db8::8d3:0:8a2e:70:7344</li> <li>fd6a:291c:f971::/48</li> <li>ff15:faad:7741:88a:874:33::11</li> <li>::</li> <li>fe80::456:489d:4afa:b00a</li> <li>::1/128</li> <li>20a0:faaf:1411:77aa:99::33</li> </ul> |           |
|     | <ul> <li>fdca:9f01:549b::/48</li> <li>64:ff9b::192.168.0.1</li> </ul>                                                                                                                                                   |           |
| 14. | Your provider assigns the following subnet to you. 201f:3300:da11:7000::/56 You want to create at least 22 networks. Which subnetmask is needed, which are the netaddresses of these networks?                          |           |
| 15. | After autoconfiguration in the LAN, an interface has the IPv6 address 2001:200:0:8002:203:47FF:FEA5 What are the Link-Local IPv6 address and the MAC address (when EUI-64 is used)?                                     | 5:3085/64 |
| 16. | Check you local IP-configuration and extract the ip-address and routing configuration. Which commands do you use?                                                                                                       |           |
|     |                                                                                                                                                                                                                         |           |

#### 6 Tools

17. Create a GNS3 project with two switches and four hosts (no VPCs, please use hosts) and connect the components as shown in the figure. Start a capturing with Wireshark on all connections. Configure different IP addresses on all four hosts in the same network. Add the following code in the file /etc/networking/interfaces, change the address on each host.

auto eth0 iface eth0 inet static address 192.168.0.1 netmask 255.255.255.0 broadcast 192.168.0.255

 ${
m H1~gets~192.168.0.1,~H2~gets~192.168.0.2,~H3~gets~192.168.0.3}$  and  ${
m H4~gets~192.168.0.4.}$ 



Configure a separate broadcast domain for Host 1 and 3 and a separate broadcast domain for host 2 and host 4.

## 7 Routing

18. Shown are the routing table and the ARP table of the computer (R) with the two IP addresses of the interfaces eth1 and eth0: 193.25.22.65 and 192.168.44.1

Routing Table

| Destination  | Gateway     | Genmask       | Iface |
|--------------|-------------|---------------|-------|
| 193.25.22.0  | 0.0.0.0     | 255.255.255.0 | eth1  |
| 192.168.44.0 | 0.0.0.0     | 255.255.255.0 | eth0  |
| 127.0.0.1    | 0.0.0.0     | 255.255.255.0 | lo    |
| 0.0.0.0      | 193.25.22.1 | 0.0.0.0       | eth1  |

ARP Cache

| Address       | HWType | HWAddress         | Iface |
|---------------|--------|-------------------|-------|
| 192.168.44.11 | Ether  | 00:50:DA:4B:F9:5E | eth0  |
| 192.168.44.20 | Ether  | 00:D0:B7:D4:87:6D | eth0  |
| 193.25.22.197 | Ether  | 00:A0:C9:D5:AC:7B | eth1  |
| 193.25.22.1   | Ether  | 00:D0:BC:F4:8C:E4 | eth1  |

| Sketch the network routers. | in which this compute | er is located and the n | eighbouring networks w | with hosts and |
|-----------------------------|-----------------------|-------------------------|------------------------|----------------|
|                             |                       |                         |                        |                |
|                             |                       |                         |                        |                |
|                             |                       |                         |                        |                |
|                             |                       |                         |                        |                |
|                             |                       |                         |                        |                |
|                             |                       |                         |                        |                |

| 19. | Load the pcapng-file $net1.pcapng$ with $Wireshark$ and determine the involved devices of the network. Draw a plan of the network resting upon the information of the capture file. Additional information the capture was done on two different positions in the network, and subsequently merged to a single file |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                     |

20. Assume you have a network as shown in the next figure. The PC wants to ping the server. Router0

|                               | 20.0.0.2<br>CC:DD:CC:DD:CC:D  | 20.0.0.1<br>99:88:77:66:55:44 |
|-------------------------------|-------------------------------|-------------------------------|
| PC-PT<br>PC0                  | 829<br>Router0                | Server-PT<br>Server0          |
| 10.0.0.1<br>00:11:22:33:44:55 | 10.0.0.2<br>AA·BB·AA·BB·AA·BB |                               |

| c        | , •      |
|----------|----------|
| performs | routing. |

Fill in the missing values in the boxes:

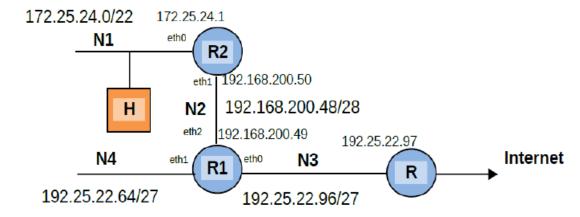
Left of Router0:

Right of Router0:

|                         | 18 11 11 11             |
|-------------------------|-------------------------|
| source ip-address       | source ip-address       |
| destination ip address  | destination ip address  |
| source mac-address      | source mac-address      |
| destination mac-address | destination mac-address |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |

 $21.\ \mbox{Now assume the router0 performs network address translation.}$ 

Fill in the missing values in the boxes:


Left of Router0:

Right of Router0:

| source ip-address       | source ip-address       |
|-------------------------|-------------------------|
| destination ip address  | destination ip address  |
| source mac-address      | source mac-address      |
| destination mac-address | destination mac-address |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |
|                         |                         |

```
22. You have this routing table of a router in a network.
     Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
              o - ODR, P - periodic downloaded static route, + - replicated route
     Gateway of last resort is not set
            10.0.0.0/8 [110/2] via 14.0.0.1, 00:31:16, FastEthernet0/0
             14.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
     С
                14.0.0.0/8 is directly connected, FastEthernet0/0
                14.0.0.2/32 is directly connected, FastEthernet0/0
             15.0.0.0/8 [110/2] via 14.0.0.1, 00:31:16, FastEthernet0/0
     0
             20.0.0.0/24 is subnetted, 1 subnets
                20.0.0.0 [110/4] via 45.0.0.2, 00:00:03, FastEthernet1/0
             23.0.0.0/8 [110/3] via 45.0.0.2, 00:00:03, FastEthernet1/0
     0
            30.0.0.0/8 is variably subnetted, 3 subnets, 3 masks
     С
                30.0.0.0/8 is directly connected, FastEthernet1/1
     0
                30.0.0.0/24 [110/3] via 45.0.0.2, 00:00:03, FastEthernet1/0
                30.0.2/32 is directly connected, FastEthernet1/1
             35.0.0.0/8 [110/2] via 45.0.0.2, 00:00:03, FastEthernet1/0
             40.0.0.0/24 is subnetted, 1 subnets
            40.0.0.0 [110/2] via 45.0.0.2, 00:25:28, FastEthernet1/0 45.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
     0
                45.0.0.0/8 is directly connected, FastEthernet1/0
     C
                45.0.0.1/32 is directly connected, FastEthernet1/0
     Create a GNS3-project resulting in such a routing table.
23. Open the GNS3-project static-routing gnsproject and configure H3 as a router. Configure H1 and
     H2 with the following ip-addresses:
        • H1: 10.0.0.1/24
        • H2: 10.3.0.3/24
     Configure all hosts to route the traffic properly. After the configuration, H1 should be able to ping
```

24. Given is the network structure shown with the routers R1, R2 and R as well as the host H.



Specify the routing tables of R1, R2 and H.

