University of Applied Sciences and Arts Dortmund

Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides

WE PRESENT YOU THE BOOK
THAT CHANGED SOFTWARE DESIGN -

Softwaretechnik 2 [T JE#-A

Entwurfsmuster A\"%

Fachhochschule
Dortmund © SS 2021 Prof. Dr. Sabine Sachweh

University of Applied Sciences and Arts

Struktur

1. EinflUhrung

2. Architekturmodellierung / Grobentwurf
3. Architekturstile/-muster |

4. Architekturstile Il
5.
6.
/.

Architekturstile Il
OOD der Businesslogik / Fachlogik

Entwurfsmuster

Softwaretechnik 2 Businesslogik = SS 2021 » ©Prof. Dr. Sabine Sachweh = Folie 2

Struktur

7. Entwurfsmuster

7.1. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

7.2.1.
1.2.2.
7.2.3.
/.24,
/.2.5.
1.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 3

Entwurfsmuster (design patterns)

= Bewahrte, generische Losung fur ein immer wiederkehrendes Entwurfsproblem
= Zusammengefasst in einem Standardwerk von 1994:

Design Patterns. Elements of Reusable Object-Oriented Software
= Autoren (GoF, Gang of Four):

8). it
Design Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
lohn Vhissides

Lyt '
Entwurfsmuster

> Errerde waderwone sy
L)

Wy ADOSON WESLEY

b

Von Links nach rechts: Ralph Johnson, Erich Gamma, Richard Helm und John Vlissides (+ 2005)

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 4

Kolner Dom — Architekturstil/-muster

= Seit 1996 UNESCO Weltkulturerbe

= Erbaut aus Londorfer Basalt, einem Lava-
gestein aus dem Vogelsberg-Massiv

= Der Dom weist eine Aul3enlange von 144,58
Metern und eine Héhe von 157,38 Meter auf.

= Gotische Kathedrale mit dem Grundriss
tinfschiffige Basilika mit einem ausladenden
Querhaus.

= Bauschema einer klassischen flinfschitfigen

Basilika im Querschnitt:
T

Das mittlere Hauptschiff ist hoher als die niedrigen Seitenschiffe.

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 5

2]
£
O
O
| -
O
=
:0
V%
0
Q
g
@
t
O
Q
xS
—
O
Z

EinfUhrung = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 6

Softwaretechnik 2

Entwurfsmuster in der Architektur

® Hauptportal im nordlichen Querhaus
des Kolner Doms

" Michaelsportal (Mitte)

= Wie wlrden Sie dieses Portal beschreiben?

Softwaretechnik 2 Einflhrung = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 7

Entwurfsmuster in der Architektur

Wdd ' “‘-4

= der Fachmann (Architekt) sagt:

* Dombaumeister Zwirner entwarf die 1843-1855
errichtete neugotische Nordfassade

* Uber dem Michelsportal ragt ein
hoher Wimperg mit finf Statuen auf
- Ambrosius
- Gregor der GroBe
- Auferstandener Christus
- Augustinus
o Hieronymus
* der Wimperg wird von Filialen flankiert
und besitzt deutlich ausgearbeitete Krabben,
sowie eine Kreuzblume als Giebelblume

=
et i

A (0]
, !” .

Softwaretechnik 2 Einflhrung = SS 2021 » ©Prof. Dr. Sabine Sachweh = Folie 8

Entwurfsmuster in der Architektur

= Der Wimperg (auch Wimberg) ist ein
giebelformiges Bauteil der Gotik zur
Bekronung von Portalen und Fenstern.

= Die Schragen des Wimpergs sind mit
Krabben und

= oft von zwei kleinen TUrmchen, den Fialen
geschmuckt.

= Die Spitze wird haufig mit einer
Giebelblume abgeschlossen.

\/\ -~
: lﬂ/]] lLlﬂ' '
: = ':| y & .,;.

Filialen

S
T4)
fe Glebelblumeg Krabben ﬁj

- ,_,.-‘,.,\;-.-_, { v —l" 4'{:? -
m

L

j

[www.architektur-lexi kon.dké]

Softwaretechnik 2

Einfihrung = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 9

Entwurfsmuster in der Softwaretechnik (design patterns)

= Beschreibung eines Musters

° Name
o Beschreibt ein Entwurfsproblem, seine Losung und Konsequenzen mit einem oder zwei
Wortern

* Problembeschreibung
o QGibt an, wann das Muster anwendbar ist
o Problem und Kontext
o Auch Erklarung spezifischer Entwurfsprobleme

* Losungsbeschreibung
o Kein konkreter Entwurf und keine Implementierung
o Abstrakte Beschreibung des Entwurfsproblems
o Beschreibt allgemeine Anordnung der Klassen bzw. Objekte

* Konsequenzen

o Zeit- und Speichereffizienz
o Sprach- und Implementierungseigenschaften
o Auswirkungen auf Flexibilitat, Erweiterbarkeit und Portierbarkeit

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 10

Entwurfsmuster (design patterns)

= Klassifikation der Muster

Erzeugungsmuster (creational patterns)
Helfen, ein System unabhangig davon zu machen, wie seine Objekte erzeugt,
zusammengesetzt und reprasentiert werden

Strukturmuster (structural patterns)
Befassen sich mit der Zusammensetzung von Klassen und Objekten zu groBeren

Strukturen

Verhaltensmuster (behavioral patterns)

- Befassen sich mit der Interaktion zwischen Objekten und Klassen
- Beschreiben komplexe Kontrollflisse, die zur Laufzeit schwer nachvollziehbar sind

= Weitere Klassifikation der Muster

Klassenbasierte Muster

-Behandeln Beziehungen zwischen Klassen
- Ausgedriickt durch Generalisierungsstrukturen
- Festgelegt zur Ubersetzungszeit

Objektbasierte Muster
- Beschreiben Beziehungen zwischen Objekten, die zur Laufzeit geandert werden kénnen
- Benutzen auch bis zu einem gewissen Grad die Generalisierung

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 11

Klassenbiliothek

Fundamental-
Klassenbibliotheken

fundamentale, allgemein
nutzbare, systemnahe
Klassen wie Listen, strings,
bags, maps, queues usw.

GUI-

|| Klassenbibliotheken

Klassenfurgrafische Benutzungs-
oberflachen, wie widgets, menu-
bar, scrollbar, window, list box,
text edit

Klassen-
bibliotheken

Grafik-

|| Klassenbibliotheken

Klassen zur Entwicklung kom-
plexer, interaktiver Grafikan-
wendungen: Diagramme, spread-
sheets, Skalen, Vektorgrafiken

Klassenbibliotheken
zum Zugriff auf

| Datenbanken

Klassen zur Ansteuerung von
(relationalen) Datenbank-
systemen

Klassenbibliotheken
zur Interprozel-
kommunikation

Klassen zur Kommunikation
zwischen Prozessen: dispatcher,
data representation, message
header, name-service

Anwendungs-
spezifische

~ | Klassenbibliotheken

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 12

Klassenbibliothek

Beispiel fiir eine fundamentale Klassenbibliothek
Die C++-Standardbibliothek bietet beispielsweise:

= Container

= |teratoren

= Algorithmen

= Funktionsobjekte

= Zeichenketten

Name Klassenname

Felder dynamischer Grol3e, Vector| std: : vector

Felder fester Grof3e std::trl::array
doppelt verkettete Listen std::list
Warteschlangen std: :queue

Warteschlangen mit zwei Enden |std::deque

= Eingabe und Ausgabe

= Lokalisierung

= Numerik

= Ausnahmen

= RunTime Type Information

Sequenzielle Container

Beschreibung
Einfigen und Loschen am Ende ist in (’)(1) und fiir anderen Elemente in O(n,) maglich.
Der Container unterstitzt wahlfreien Zugriff (Random Access) in O(1)

Erst seit technical review 1 verfigbar.
Einfiigen und Loschen ist in ((1) maglich. Wahlfreier Zugriff ist nicht maglich.

Der Container unterstiitzt keine Iteratoren.

Der Datentyp verhalt sich wie der Vector, kann jedoch Elemente am Anfang und Ende in O(1) einfigen.

Warteschlangen mit Prioritaten std::priority_gueue Die Struktur garantiert wie der Heap, dass immer das Element mit der hochsten Prioritat am Beginn steht.

Stapel std::stack

etc.

Softwaretechnik 2

Der Container unterstiitzt keine Iteratoren.

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 13

Framework (1/2)

= Menge von zusammenarbeitenden Klassen, die einen wiederverwendbaren
Entwurf fir einen bestimmten Anwendungsbereich implementieren

= Besteht aus konkreten und — insbesondere — aus abstrakten Klassen, die
Schnittstellen definieren

= Definition von Unterklassen zur Verwendung und Anpassung des Frameworks

* Selbstdefinierte Unterklassen empfangen Botschaften von vordefinierten Framework-
Klassen

* Hollywood-Prinzip: »Don’t call us, we'll call youx.
= Ist immer spezifisch auf einen Anwendungsbereich ausgelegt
* Beispiele
o Erstellung grafischer Editoren

o Erstellung von Finanzsoftware

= Spezialisierung fur eine konkrete Anwendung durch Ableiten von Unterklassen aus
den abstrakten Framework-Klassen

= Realisierung der Frameworks mittels Programmiersprachen
Frameworks kénnen also ausgefihrt und direkt wiederverwendet werden

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 14

Framework (2/2)

Framework

= Ermoglicht hohe Wiederverwendung

= Bestimmt die Architektur der Anwendung

= Definiert die Struktur der Klassen und Objekte und deren Verantwortlichkeiten

= Legt fest, wie Klassen und Objekte zusammenarbeiten

= Legt fest, wie der Kontrollfluss aussieht

= Anwendungsprogrammierer kann sich auf die Details der Anwendung konzentrieren

Muster vs. Framework

= Entwurfsmuster sind abstrakter als Frameworks

* Werden nur beispielhaft durch Programmcode reprasentiert

* Anwendung von Entwurfsmustern mit einer neuen Implementierung verbunden
= Entwurfsmuster sind kleiner als Frameworks

* Ein typisches Framework enthalt mehrere Entwurfsmuster
= Entwurfsmuster sind weniger spezialisiert als Frameworks

* Keine Beschrankung auf einen bestimmten Anwendungsbereich

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 15

Entwurfsmuster

Die klassischen Entwurfsmuster

Erzeugende Muster

Strukturelle Muster

Verhaltensmuster

Singleton (Einzelstiick) Facade(Fassade) Mediator (Vermittler)
Prototype (Prototyp) Decorator (Dekorierer) lterator
Factory Method (Fabrikmethode) Bridge (Bricke) Interpreter

Builder (Erbauer)

Composite (Kompositum)

Command (Kommando)

Abstract Factory (Abstrakte Fabrik) Adapter Chain of Responsibility (Zustandigkeitskette)
Flyweight (Fliegengewicht) [Memento
Proxy (Stellvertreter) Observer (Beobachter)
State (Zustand)

Strategy (Strategie)

Template Method (Schablonenmethode)

Visitor (Besucher)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 16

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

7.2.1.
1.2.2.
7.2.3.
71.2.4.
/.2.5.
1.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 17

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client
//‘ ‘\\
-’ S
<<use>> .~ S _<<use>>
// SN e
/, \\A
L
Pizza Pizzaservice
Pizza(...) <<create>> .
- ——————— nimmBestellungAn(...)
bereitePizzaZu():Pizza
lieferePizzaAus()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 18

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client
//‘ ‘\\
-’ S
<<use>> .~ S _<<use>>
// SN e
/, \\A
L
Pizza Pizzaservice
Pizza(...) <<create>> .
S nimmBestellungAn(...)
bereitePizzaZu():Pizza
lieferePizzaAus()

Wie sieht das Ganze bei verschiedenen Gerichten aus?

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 19

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

—
e
'

<<use>> .7
7’

'
e

S~ <<use>>

Pis BTN
Lieferservice
Gericht
{abstract}]
nimmBestellungAn(...)
bereiteGerichtZu(auswahl:String):Gericht
i& liefereGerichtAus()
| |
| |
. | |
Pizza Burger I I
| |
Pizza(...) Burger(...) : :
1 1
N A I I
; : <<create>> ' !
____________________ J 1
|
o _sScreate>>_ ___________ |
Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 20

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client
<<use>>/ 5 - < ~ <<use>>
el \\\‘A
Lieferservice
Gericht
{abstract} .
nimmBestellungAn(...)
bereiteGerichtZu(auswahl:String):Gericht
i& liefereGerichtAus()

1 1
| |
1 |
Pizza Burger I I
1 |
Pizza(...) Burger(...) ! !
| 1
A A | |
: ,' <<create>> ' :
____________________ J 1
| |
| <<create>> 1

Als Framework geeignet? [Jja [Jnein []vielleicht

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 21

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client
//// ~~~~"‘~~-_<<use>>
<<use>> . =3
L,/’ Lieferservice
{abstract}
Gericht nimmBestellungAn(...)
{abstract} bereiteGerichtZu():Gericht {abstract}
liefereGerichtAus()
Pizza Burger Burgerservice
Pizza(...) Burger(...) bereiteGerichtZu() :Burger
A A i
| | <<create>> I
e TTETmEEmEEEmEE T E T E T Pizzaservice
: <<create>>

bereiteGerichtZu():Pizza

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 22

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

public class Client {
static Lieferservice 1;
public static void main(String [] argv) {

if (argv[@] == "pizza") {
1 = new Pizzaservice();

}

if (argv[@] == "burger") {
1 = new Burgerservice();

}

Gericht g = l.bereiteGerichtZu();

}
}

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 23

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client
/// ~~~~"‘~~-_<<use>>
<<use>>//’ “--_3
L,’/ Lieferservice
{abstract}
Gericht nimmBestellungAn(...)
{abstract} bereiteGerichtZu():Gericht {abstract}
liefereGerichtAus()
P1zza Burger Burgerservice
Pizza(...) Burger(...) bereiteGerichtZu() :Burger
A A [
1 | <<create>> I
e TTETmEEmEEEmEE T E T E T Pizzaservice
:. <<create>> . . .
--------------------------- bereiteGerichtZu():Pizza

Als Framework geeignet? [Jja [Jnein [Jvielleicht

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 24

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client
St S <<use>>
<<use>>/’ ~~~~~
L/’ J.:.aaﬁnnm Creator
{abstract}
Product
n1mmBeste11ungAn(.) factor Method
{abstract}){:stract}
liefereGerichtAus()
—Rizze— —Bungep— ———— Burgerservice—
Pizza(...) | Burger(...) ; ;
gor:jcre;; Gorcrete factoryMethod
r A C teCreatorB
o UC| PI‘OdUCtA I <<create>> : ‘ |
g ns .
b e o <<create>> _ __ _ _ ___ , :
factoryMethod

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 25

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Anwendbarkeit

= Verwendung des Musters, wenn
* eine Klasse die von ihr zu erzeugenden Objekte nicht im voraus kennen kann
* die Unterklassen festlegen sollen, welche Objekte sie erzeugen

Definiert die Schnittstelle der Objekte,

e Y S o Deklariert die abstrakte Fabrikmethode.

Creator
Struktur
Product factoryMethod() X
T anOperation() = = [= = = = {product = factoryMethod()
ConcreteProduct (= <ea'€» 1 concreteCreator
factoryMethod() = = = = = 4 return new
| ConcreteProd uct()
_ _ _ Uberschreibt die Fabrikmethode, so dass

zurlckgibt.

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 26

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Anwendbarkeit

= Verwendung des Musters, wenn
* eine Klasse die von ihr zu erzeugenden Objekte nicht im voraus kennen kann
* die Unterklassen festlegen sollen, welche Objekte sie erzeugen

Definiert die Schnittstelle der Objekte,

e Y S o Deklariert die abstrakte Fabrikmethode.

Creator
Struktur
Product factoryMethod() &
% anOperation() = == = = = {product = factoryMethod(j
Z'k e

= Fabrikmethoden verhindern, dass Sie anwendungsspezifische
Klassen in den Code des Frameworks anbinden mussen!

- I ’ - l I ConcreteProd uct() I

Uberschreibt die Fabrikmethode, so dass
Implementiert die Schnittstelle des Products. sie ein Objekt von ConcreteProduct

zurlckgibt.

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 27

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

7.2.1.
7.2.2.
7.2.3.
71.2.4.
/.2.5.
1.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 28

Singleton (objektbasiertes Erzeugungsmuster)

Problemstellung zentrales Objekt,
das eigentlich Uberall zugreifbar sein muss.

Spieler Spielfiguren

) Lo

Settings [€—— Spiel ——> Spielfeld

W \ —

History

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 29

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit

"= Verwenden Sie dieses Muster, wenn

® es genau ein Objekt eine Klasse geben soll und ein einfacher Zugriff darauf bestehen soll

das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und
Klienten das erweiterte Exemplar verwenden kdnnen, ohne ihren Code zu andern

=> einfache Implementierung

public final class Singl

public static final Singleton uniqueInstance = new Singleton() ;
private Singleton(){ } //Konstruktor

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 30

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit

"= Verwenden Sie dieses Muster, wenn

® es genau ein Objekt eine Klasse geben und ein einfacher Zugriff darauf bestehen soll

® das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und
Klienten das erweiterte Exemplar verwenden kdnnen, ohne ihren Code zu andern
® => kein offentlicher Zugriff, sondern tGber Methode + Erzeugung erst bei Zugriff
public final class Singleton
private static final Singleton uniqueInstance = null;
private Singleton(){ } //Konstruktor
public static Singleton getInstance() {
if (uniquelnstance == null) {
uniqueInstance = new Singleton() ;
}
return uniquelnstance;
}
}
Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 31

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit

"= Verwenden Sie dieses Muster, wenn
® es genau ein Objekt fir eine Klasse geben und ein einfacher Zugriff darauf bestehen soll

® das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und
Klienten das erweiterte Exemplar verwenden kdnnen, ohne ihren Code zu andern

=> zusatzlich noch Daten im Objekt

Struktur

Singleton

- uniquelnstance:Singleton
- singletonData:DataType

- Singleton()
getInstance():Singleton -
singletonOperation()
getSingletonData() :DataType

+ o+ |+

return
uniqueInstance

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 32

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit

Verwenden Sie dieses Muster, wenn

= Verbesserung gegenuber globalen Variablen

~ = Singleton-Klasse kann durch Unterklassen spezialisiert werden

Struktur

Singleton

- singletonData:DataType

+ singletonOperation()

+ getSingletonData():DataType

return
uniqueInstance

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 33

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

7.2.1.
7.2.2.
7.2.3.
71.2.4.
/.2.5.
1.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 34

Kompositum-Muster (objektbasiertes Strukturmuster)

Frischhalteboxen

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 35

Kompositum-Muster (objektbasiertes Strukturmuster)

Anwendbarkeit

"= Verwenden Sie dieses Muster, wenn
® Sie whole-part-Hierarchien von Objekten darstellen wollen

¢ die Klienten keinen Unterschied zwischen elementaren und zusammengesetzten Objekten
wahrnehmen und alle Objekte gleich behandeln sollen

Struktur Deklariert die Schnittstelle fir alle Objekte,
implementiert Default-Verhalten und

parts deklariert eine Schnittstelle zum Zugriff und|

Verwalten von Teilobjekten.

Component {abstract} -
Client <
1| + operation(){abstract} |*

Aggregatklasse, definiert das Verhalten von
zusammengesetzten Objekten, speichert
Teilobjekte und implementiert Operationen,

die sich auf Teilobjekte beziehen.

Reprasentiert die Klienten.

Reprasentiert elementare $0..1
Objekte. Leaf Composite
+ operation() + operation() m m = = = = =} = — —— - fo; :iitfo;?)partstj
+ add(c:Component) §-0p
+ remove(c:Component)
+ getPart(i:int):Component

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 36

Kompositum-Muster (objektbasiertes Strukturmuster)

Beispiel 1: Gruppierung von Grafikelementen

Graphic {abstract}
- parts
Xlo: int; Ylo: int; Xru: int; Yru: int; <
+move() {abstract}
+draw() {abstract}
+resize(size:int) {abstract}
[| . 0..1
Line Circle Group
+move() +move () +move()
+draw() +draw() *d"aW() . .
+tresize(size:int) +resize(size:int) tresize(size:int)
+add(g:Graphic)
+remove(g:Graphic)
+getPart(i:int):Graphic

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 37

Kompositum-Muster (objektbasiertes Strukturmuster)

Beispiel 2: GUI-Komponenten

<<abstract>>
Component
component
getParent(): Component 0..*

getWidth(): int
addFocusListener(l: FocusListener)
setVisible(b: boolean)

NNDNANA

________________________ R T NY T T

TextComponent
Scrollbar
List

QO

Container

| |

| l

: |

| I

| |

| |

| |

i l

] I add(comp: Component)
|

! Label i remove(com: Component)
| |
| l
| |
| |
| |
| |
| |
: |
| l
| |
| |

getComponent(n: int):Component
Button getComponents(): Component(]

CheckBox
Choice

Composite B‘
N e o e e e e e e e . — — —— —— — —— —— ——— —— —— — ————————

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 38

Kompositum-Muster (objektbasiertes Strukturmuster)

Beispiel 2: GUI-Komponenten

<<abstract>>

= Klient wird einfacher

= Es ist einfach, neue Arten von Komponenten einzufligen

| TextComponent I i | $
[I
|
! Scrollbar i Container
E List :
! add(comp: Component)
|
{ Label i remove(com: Component)
I | getComponent(n: int):Component
E Button | getComponents(): Component(]
: CheckBox i !
| |
| Choice i :
{ |
I I
| |

Composite [%
L ——

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 39

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

7.2.1.
7.2.2.
7.2.3.
7.24.
/.2.5.
1.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 40

Proxy—M uster (objektbasiertes Strukturmuster)

Anwendungsbeispiele

Remote-Proxy als lokaler Vertreter fur ein Objekt auf einem anderen Computer
Virtuelles Proxy erzeugt »teure« Objekte auf Verlangen = z.B. Cache

Schutz-Proxy kontrolliert Zugrift auf das Original

Smart Reference als Ersatz fir einen einfachen Zeiger, der zusatzlich folgende
Funktionen anbietet:

* Zahlen der Referenzen auf das eigentliche Objekt

* Automatische Freigabe, wenn es keine Referenzen mehr besitzt

* Laden eines persistenten Objekts, wenn es erstmalig referenziert wird

* Testen eines Objekts auf locking, bevor darauf zugegriffen wird

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 41

Proxy—M uster (objektbasiertes Strukturmuster)

Struktur

Definiert die gemeinsame Schnittstelle des

Client m -Subject echten Objekts und des Proxy-Objekts
request()
RealSubject |1 Proxy
request() rsiak!ject .r.ejquest() I .rfaISubject. request() [T
/

Kontrolliert Zugriff auf das eigentliche
Objekt und ist daftr zustandig, es zu
erzeugen und zu loschen.

Definiert das echte Objekt.

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 42

Proxy—M uster (objektbasiertes Strukturmuster)

1 falls n =0

. oo , s
Beispiel: Cache fiir Funktionswerte (Fakultat) — n!=1 ln= 1Y im0

Factorial —_—
{abstract} 1;21
+ at(x:int):long {abstract} 2i=i1-12=2

31=1-2.-3=6
41=1-2.3-4=24

8!=1-2-3-4-5=120

FactorialFunction | -f FactorialCache

N

+ at(x:int):long 1 - values:Map

+ at(x:int):long

public class FactorialFunction extends Factorial

{
@Override
public long at(int x) {
long res = 1;
while(x > 0) {
res *= x;
X==7
}
return res;
}
}

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 43

Proxy—M uster (objektbasiertes Strukturmuster)

falls n =0

1
M M o i LI SR 4 s D F LA Y Y I
Beispiel: Cache fur Funktic iAo i

import java.util.Map;

public class FactorialCache extends Factorial {
private FactorialFunction £;
+ at(x: private Map<Integer, Long> values;

public FactorialCache() {
f = new FactorialFunction();

values = new HashMap<Integer, Long>() ;
FactorialFunction | -f }
+ at(x:int):long \1
@Override
public long at(int x) {

long y;

if (values.containsKey (x)) {
y = values.get(x); // use cached result

} else {
y = f.at(x); // compute result
values.put(x, y); // insert result into cache

}

return y;

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 44

Proxy—M uster (objektbasiertes Strukturmuster)

1 falls n =0
SRR P . . . e
Beispiel: Cache fur Funktionswerte (Fakultat) n n-(n—1)! fallsn>0
Factorial —_—
{abstract} 1;;1
+ at(x:int):long {abstract} 2i=i1-12=2

31=1-2.-3=6
41=1-2.3-4=24

8!=1-2-3-4-5=120

FactorialFunction | -f FactorialCache

N

+ at(x:int):long 1 - values:Map

+ at(x:int):long

public class FactorialTest {
public static void main(String[] args) {
// cached version of factorial
Factorial factorial = new FactorialCache() ;
factorial.at(10);
factorial.at(10);
factorial.at(20) ;

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 45

Proxy—M uster (objektbasiertes Strukturmuster)

Beispiel: Cache fur Funktionswerte (Fakultat) nl=

1

Factorial
{abstract}

" - /.2 \ T [G PR TR B |

= Proxy leitet Befehle an das echte Objekt weiter

racwurirairruricourl

N

racwurrairvadilic

n-(n—1)!

+ at(x:int):long

public class FactorialTest ({
public static

Softwaretechnik 2

- values:Map

+ at(x:int):long

void main(String[] args) {

// cached version of factorial

Factorial factorial
factorial.at(10);
factorial.at(10);
factorial.at (20);

new FactorialCache() ;

or=1
1'=1

(== S = =y

N NN

falls n =0
falls n > 0

I
no

W W W
P |

Ll

[S]
g

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 46

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

Softwaretechnik 2

7.2.1.
7.2.2.
7.2.3.
7.24.
7.2.5.
1.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 47

Fassaden-Muster (objektbasiertes Strukturmuster)

You have 4 documents with unsaved changes. Do you want to
\ ?! review these changes before quitting?

If you don't review your documents, all your changes will be lost.

(' Discard Changes) (_cancel) (€ Review Changes)

! tinyNotepad is a tiny notepad written in Java

g‘i, Hello World

o)

o

Softwaretechnik 2 EinfUhrung = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie <Nr.>

Fassaden-Muster (objektbasiertes Strukturmuster)

Client

Swing
Top-Level Components
| JApplet i | JDialog JFrame il JWindow i
{J(omponent ?
I I I
Box JLabel i | JList il JMenuBar h

I I |
i | JPopupMenu i | JScrollBar il JScrollPane i

—

| I |
I JTable i | JTree i | JinternalFrame il JOptionPane i

I I [
| JProgressBar i | JRootPane i | JSeparator il JSlider i | JSpinner i
[Jsplitbane | [JTabbedPane | | JToolBar | [JmoolTip |

| I |
I Jiewport i | JColorChooser i / JTextComponent I

I
| JFileChooser i | JLayeredPane i JTextField

JEditorPane ' ’
JDesktopPane |JPasswordF|eId i |JFormattedTextF|eIdi

— AbstractButton ;

JCheckBox |
JToggleButton
JRadioButton i tens i

JButton

JRadioButtonMenultem i

JMenultem

I_I JCheckBoxMenultem i

Softwaretechnik 2

EinfUhrung = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie <Nr.>

Fassaden-Muster (objektbasiertes Strukturmuster)

Beispiel: Messages in graphischen Nutzungsoberflachen

Probleme
Jeder Nutzer geht anders vor
Sind die Abhangigkeiten nicht bekannt => Fehler

Treten Anderungen an der Umsetzung des Packages auf, missen die Nutzer sich erst
einarbeiten

Jedes Message-Fenster sieht ggf. anders aus

Probleme (allgemein)

Systemwissen notwendig. Jeder Client muss nicht nur jede bendtigte Klasse des Systems
kennen, sondern auch ihr Zusammenspiel und ihre Funktionsweise, um sie nutzen zu konnen.

Abhangigkeiten und geringe Anderungsstabilitit. Da jeder Client viele verschiedene Klassen
kennen muss, steigen seine Abhangigkeiten. Er ist hart an das System gekoppelt. Anderungen
am System flhren zwanglaufig dazu, dass der Clientcode bricht oder nicht mehr korrekt
funktioniert - und das gilt fur jeden Client, der das System nutzt. Die Folge ist hoher
Wartungsaufwand.

Coderedundanz und Gefahr von Inkonsistenz. Alle Clients, die eine Message ausgeben
wollen, missen immer den gleichen Code schreiben.

Softwaretechnik 2 Einflhrung = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie <Nr.>

Fassaden-Muster (objektbasiertes Strukturmuster)

Anwendbarkeit

= Verwendung des Muster, wenn
® einfache Schnittstellen zu einem komplexen Paket angeboten werden sollen
® es zahlreiche Abhangigkeiten zwischen Klienten und einem Paket gibt
® Pakete in Schichten organisiert werden sollen

Struktur

Client Client

/\ \ Definiert keine neue
7 - ,

Funktionalitat.

Packfgp/ Pack age

1/ 2

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 51

e —

Fassaden-Muster (objektbasiertes Strukturmuster)

Beispiel
= JOptionPane Source Demo EJ@J@J
Show an Option Pane
® Show Message (Get Confirmation (CollectInput (' Present Options
0 Plain ® Information (' Question (Warning (Error
® Default (YesMNo (YesMNoiCancel (' OKiCancel
lcon Code IDE Value Method Name
No icon JOptionPane PLAIN_MESSAGE -1
@ JOptionPane ERROR_MESSAGE 5 showConfirmDialog
® JOptionPane INFORMATION_MESSAGE : showInputDialog
A JOptionPane WARNING_MESSAGE R showMessageDialog
JOptionPane. QUESTION_MESSAGE . showOptionDialog

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 52

Fassaden-Muster (objektbasiertes Strukturmuster)

Client
o Client Client
Beispiel
Swing subsystem | |
JOptionPane
BorderLayout
\ JPanel
FlowLayout java.awt.Window
T BorderFactory
java.awt.Dialog
FileDialog JDialog

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 53

Fassaden-Muster (objektbasiertes Strukturmuster)

Struktur

Client Client

/\ \ Definiert keine neue
| 7 < -

[Funktionalitat.

Paccﬂég/ Pack age Far i
£/

e L

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 54

Fassaden-Muster (objektbasiertes Strukturmuster)

Struktur

= Vereinfachung der Benutzung des Systems durch

Reduzierung der Klassen, die den Klienten bekannt sein
. Definiert keine neue
mussen

Funktionalitat.

= Lose Kopplung erleichtert Austausch von Paketenund !
deren unabhangige Implementierung

= Klienten kénnen die Fassade umgehen und direkt auf die
Klassen des Pakets zugreifen

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 55

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

Softwaretechnik 2

7.2.1.
7.2.2.
7.2.3.
7.24.
7.2.5.
7.2.6.
1.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 56

Beobachter-Muster (objektbasiertes Verhaltensmuster)

m C—1
n C—1
= Strenge Drei-Schichten-Architektur
® GUI-Schicht kann nur auf Fachkonzeptschicht zugreifen |
® Fachkonzeptschicht kann nur auf Datenhaltungsschicht zugreifen E
* Vorteil:
GUI-Schicht unabhangig von gewahlter Speicherung der Daten |
* Flexible Drei-Schichten-Architektur [‘-‘~ — ~~j
® GUI-Schicht kann auf Fachkonzept- — .
schicht und Datenhaltungsschicht zugreifen : : i
® Vorteile: groBere Flexibilitat, : } |
bessere Performance | ‘ |
i * !
® Nachteile: geringere Wartbarkeit, Fachkonzeptschich |
Anderbarkeit und | 5
Portabilitat |

Datenhaltungsschicht } = |

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 57

Beobachter-Muster (objektbasiertes Verhaltensmuster)

JDialog ket [ArtikelView
Nu'nmetl t © ©
Bezeicl’nmg|
Pleisl
ArtikelView ArtikellisteView
nummerTextField artikellisteTable M
bezeichnungTextField Artikelliste
preisTextField onInit() View R BT |
. onAendern()
onInit() update()
onOK()
update() _dindem.._|
save()
—
GUI-Schich
Artikel Artikelliste fiCt
|

nummer uniqueInstance '
bezeichnung :
preis getInstance() |

insertArtikel() .

Fachkonzeptschicht

getArtikel()
modifyArtikel()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 58

Beobachter-Muster (objektbasiertes Verhaltensmuster)

List Aol B ikl R
Nurnmer IBeaeichmng | Nummer | 1

1 Watch ;
2 _?\r? artWatc Bezeichnung | Smart\Watch

3 Tablet Preis [156,99

A Artiglise

:Benutzer a:Artikel
u ‘Artikelliste : !
View i :
onAendern | | |
2 getArtikel | |
= i |
. _ _ _a=getArtikel _ _/ _ |_,_| :
! [
| new(@) _AikelView I I
' [
onlnit | | I
update | |
I getNummer 5 |
I >
| getBezeichnung J—,—I
| >

| getPreis ‘I—II

~update : Ll
onlnit ' :
_OnAendem _ | FTT 77T : ,

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 59

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Liste Artikel m
T IgmnrtVTtD_l Nl 1
martWatc . :
Inkonsistenz ssemns [Pebble
3 Tablet - ,
Andem...

X

-Benutzer Artikelliste a:Artikel
m! | :Artikelliste : :
View | :
onOk I: ' :

! setNummer |

| -

I setBezeichnung __Ly—‘

[

| setPreis T

| L

' [

| [

[modifyArtikel(a) [

' [
onOlk [[
_________ S ——— |

L | [I

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 60

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Ibialog s E N
A Nu'nmetl t € €
Bezeicl’nmg'
Pleisl
ArtikelView ArtikellisteView
nummerTextField artikellisteTable n—
bezeichnungTextField Artikelliste
preisTextField onInit() View Nummer | Bezeichnung |
. onAendern()
onInit() update()
onOK ()
update() findem..._|
save()
1
GUI-Schich
Artikel Artikelliste f'ci
' 1
nummer uniquelnstance '
bezeichnung |
preis getInstance() I
insertArtikel() .

Fachkonzeptschicht |

getArtikel()
modifyArtikel()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 61

Beobachter-Muster (objektbasiertes Verhaltensmuster)

\ Framework ‘

JDialog

ArtikelView ArtikellisteView

numm?rTextField . artikellisteTable Observer
bezeichnungTextField {abstract}
preisTextField onInit()

- onAendern() update(){abstract}
onInit()

on0K() update() g

update()
save()

Subject
Artikel Artikelliste —> {abstract}
nummer uniqueInstance attach(o:0Observer)
bezeichnung detach(o:Observer)
preis getInstance() notify()

insertArtikel()
getArtikel()
modifyArtikel()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 62

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit

= Verwendung des Muster, wenn

eine Abstraktion besitzt zwei Aspekte, die wechselseitig voneinander abhangen

* die Anderung eines Objekts die Anderung anderer Objekte unbekannter Anzahl impliziert

Struktur

Kennt eine beliebige Anzahl
von Beobachtern

Speichert die Daten, die
fur die konkreten
Beobachter relevant sind.

Softwaretechnik 2

Subject

ein Objekt andere Objekte benachrichtigen soll und diese Objekte sind nur lose gekoppelt

Definiert die Schnittstelle fur alle konkreten
Objekte, die Uber Anderungen eines
subjects informiert werden mussen.

L| Observer

attach{o: Observer)
detach({o:Observer)

Notify() = = = = = = = - -

observers

updare()

o.update()

for all o in observersj

Concrete Subject

subject

Concrete Observer

subjectState

1

getState() = = = = = =
setState()

return
subjectState

observerState

update() - = = = = = ~

- -‘ observerState=
subject.getState()
Kennt das konkrete Subjekt und

sorgt flr Konsistenz mit dem
konkreten Subjekt.

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 63

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Dynamische Sicht

:ConcretelSubject a:ConcreteObserver another
:ConcreteObserver
I I I
| | |
| [|
| settate |
b |
il? notify '
|
update |
getstate :
____qQetSate __ _ _ __ . ,[|
s update _ | :
update |
. getstate
LI __ _getSmte _ _ ____ e __
N AT ! — updare_ _ |
ZZrnotify |
-Ii setState '
—————————————— =8 |
| T |
|

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 64

Beobachter-Muster (objektbasiertes Verhaltensmuster)

\ Framework ‘

JDialog
ArtikelView ArtikellisteView
nummerTextField artikellisteTable > Observer
bezeichnungTextField {abstract}
preisTextField onInit()

— onAendern () update(){abstract}
onInit() update() 7
onOK ()
update()
save()

Subject
Artikel Artikelliste —> {abstract}
nummer uniqueInstance attach(o:0Observer)
bezeichnung detach(o:Observer)
preis getInstance() notify()

insertArtikel()
getArtikel()
modifyArtikel()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 65

Beobachter-Muster (objektbasiertes Verhaltensmuster)

\ JavaSE ‘

JDialog

ArtikelView ArtikellisteView
nummerTextField artikellisteTable > Observer
bezeichnungTextField <<Interface>>
preisTextField onInit() update(o:observable,

. onAendern() .

arg:0bject){abstract
gﬁ%ﬁ%fil update(o:observable, §:90] CA?{ ct}
update() arg:0bject) *
save()
Observable
Artikel Artikelliste —> {abstract}
nummer uniqueInstance notifyObservers()
bezeichnung deleteObserver()
preis getInstance() addObserver()
insertArtikel() setChanged()

getArtikel()
modifyArtikel()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 66

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
= Verwendung des Muster, wenn
Y (f.-- ANl o a0t AN D A DR [T TSR SR ISR DR SR
L .) - npliziert
« = Subjekte und Beobachter konnen unabhangig skoppelt
voneinander modifiziert und einzeln wiederverwendet
Strukt werden fur alle konkreten

) lerungen eines
= Neue Beobachter konnen ohne Anderung des Subjekts erden missen.

Kennt eine b hinzugeflgt werden

von Be

I) Concrete Observer
Concrete Subject subject

observerState
1

subjectState update() - = = = = = 4 e -‘ observerState = B
Speichert die Daten, die getstate() - — - - — - - Jreturn subject getState()
oc . setState() subjectState
fur die konkreten

Beobachter relevant sind.

Kennt das konkrete Subjekt und
sorgt flr Konsistenz mit dem
konkreten Subjekt.

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 67

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver (Observer o)

notifyObservers()

removeObserver (Observer o)

Observer
{abstract}

¥
observers

> update () {abstract}

1

DetailedClockObserver

seconds: int

ClockObserver

Clock

seconds: int

getSeconds():int
getMinutes():int

tick() //changeState

setTime(int seconds) //changeState

getClock(): Clock
setClock(Clock clock)
update()

minutes: int

N

clock

4

\
clock

getClock(): Clock
setClock(Clock clock)
update()

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 68

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver (Observer o)
removeObserver (Observer o)
notifyObservers()

Clock

seconds: int

getSeconds():int

getMinutes():int

setTime(int seconds) //changeState
tick() //changeState

N A
clock

clock

Softwaretechnik 2

// Eine Beispiel-Implementierung
import java.util.ArrayList;
import java.util.List;

public abstract class Subject {
private List<Observer> observers;

protected Subject() {
observers = new ArrayList<Observer>() ;

}

public synchronized void addObserver (Observer observer) {
if (observer !'= null && !'observers.contains (observer))

{

observers.add (observer) ;
}
}

public synchronized void removeObserver (Observer observer)
{
if (observer '= null && observers.contains (observer))

{

observers.remove (observer) ;

}

public synchronized void notifyObservers () {
for (Observer observer : observers) {
observer.update () ;

}

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

// Eine Beispiel-Implementierung
public abstract class Observer {

public abstract void update() ;

Observer
{abstract}

¥
observers

> update () {abstract}

1

DetailedClockObserver

seconds: int

ClockObserver

Clock

seconds: int

getSeconds():int

getMinutes():int

setTime(int seconds) //changeState
tick() //changeState

getClock(): Clock
setClock(Clock clock)
update()

minutes: int

N A
clock

clock

getClock(): Clock
setClock(Clock clock)
update()

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 70

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver (Observer o)

removeObserver (Observer o)
notifyObservers()

Clock

seconds: int

getSeconds():int

getMinutes():int

setTime(int seconds) //changeState
tick() //changeState

N A
clock

public class Clock extends Subject ({
private int seconds; // state

public int getSecounds () {
return seconds;

}

public int getMinutes () {
return seconds / 60;

}

public void setTime (int seconds) ({
this.seconds = seconds;
notifyObservers () ;

}

public void tick() {
seconds++;
notifyObservers () ;

clock

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 71

public class DetailedClockObserver extends Observer ({

ensmuster)

Observer
{abstract}

1 FANKY ra

private int seconds = -1; // observer state
private Clock clock;
public Clock getClock() { ... }
public void setClock (Clock clock) { ... }
@Override
public void update() {

if(clock '= null && seconds !'= clock ==

seconds = clock.getSeconds () ;

System.out.println("time in sec

Clock

seconds: int

getSeconds():int

getMinutes():int

setTime(int seconds) //changeState
tick() //changeState

A A
clock

clock

Softwaretechnik 2 }

public class ClockObserver extends Observer ({

private int minutes = -1; // observer state

private Clock clock;

public Clock getClock () {
return clock;

}

public void setClock (Clock clock) ({
if (this.clock !'= clock) {

if (this.clock !'= null) {
this.clock.removeObserver (this) ;

}

this.clock = clock;

if(clock !'= null) {
this.clock.addObserver (this) ;

}

}

@Override
public void update() ({
if (clock !'= null && minutes != clock.getMinutes()) {
minutes clock.getMinutes () ;
System.out.println("time in minutes is " + minutes) ;

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

| | Ohcerver

public class ClockTest {
public static void main (String[] args) ({
Clock clock = new Clock() ;

ClockObserver clockObserver = new ClockObserver() ;
clockObserver.setClock (clock) ;

DetailedClockObserver detailedClockObserver = new DetailedClockObserver () ; jerver
detailedClockObserver.setClock (clock) ;
clock.setTime (0) ; Clock
for(int i= 0,’ i< 120, i++) { yck ClOCk)
clock.tick() ; Ausgabe
try { time in minutes is 0
Thread.sleep (1000) ; time in seconds is 0
} catch (InterruptedException e) { time in seconds is 1
System.out.println(e.getMessage()) ; time in seconds is 2
} } time in seconds is 3
} time in seconds is 59
} time in minutes is 1
clock time in seconds is 60

Softwaretechnik 2 Entwurfsmuster = SS 2021 =

©Prof. Dr. Sabine Sachweh = Folie 73

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

Softwaretechnik 2

7.2.1.
7.2.2.
7.2.3.
7.24.
7.2.5.
7.2.6.
7.2.7.
/.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Zustands-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 74

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung

= Array anbieten mit konfigurierbarem Vergleichskriterium

Framework
Array
-a: int []
+sort()
#compare(i:int,j:int):int

Vergleich soll konfigurierbar
werden!

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 75

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung

= Array anbieten mit konfigurierbarem Vergleichskriterium

Framework schematischer, immer
| gleicher Algorithmus

Array [////

{abstract}
-a: int []
+sort() //templateMethod
#compare(i:int,j:int):int {abstract} //primitiveOperation

-~
Variationsmoglichkeit

' ' fur Nutzer des FWs

AscendingSortedArray DescendingSortedArray

#compare(i:int,j:int):int #compare(i:int,j:int):int

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 76

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
Array anbieten mit konfigurierbarem Vergleichskriterium

. .
ﬁﬂlf\f\mﬁ"‘l(‘ﬁl'\f\lf a2l a’aWald

Framework ‘ :
public abstract class Array {
private int[] a;
public Array(int[] array) ({
this.a = array;
{ }
-a: int [] public void sort() { // simple bubble sort
for(int i = a.length-1; i >= 0; --i) {
+sort() for(int § = 0; j < i; ++3) {
#compare(i:int,j:int):int if ((compare(a[j], al[j+1]) > 0) {
int temp = al[jl:;
a[jl = a[j+1];
a[j+1] = temp;
[}
}
AscendingSortedArray }

}
#compare(i:int,j:int):in-

protected abstract int compare(int i, int j);

public int[] getArray() { return a; }
public void setArray(int[] a) { this.a = a; }

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 77

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
= Array anbieten mit konfigurierbarem Vergleichskriterium

schematischer, immer

Framework
gleicher Algorithmus
Array I ////
{abstract}
-a: int []
+sort() //templateMethod
#compare(i:int,j:int):int {abstract} //primitiveOperation
A - . . oo . .
public class AscendingSortedArray extends Array ({ Va rration Smog||Ch I(e|‘['_
public AscendingSortedArray(int[] array) ({ _I ac
super (array) ; fur Nutzer deS FWS
} ingSortedArray
QOverride i:int,j:int):int
protected int compare (int i, int j) {
if(i == Jj) {
return O;
} else if(i > j) { . .
return +1; Fur kleiner werdende Werte
} else { Vorzeichen umdrehen!

return -1;
}
Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 78

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

public class ArrayTest ({
public static void main(String[] args) {
int[] array = {2, 4, 3, 1};
System.out.println ("Array") ; rlum
System.out.println("----—- "),
for (int value : array) {
System.out.println(value) ;

} Ausgabe
Array
Array ascending = new AscendingSortedArray (array) ; ;____
ascending.sort() ; P
System.out.println("\nAscending Sorted Array") ; 3
System.out.println("---------—-—--—-—-—-—-—- ") 1
for (int value : ascending.getArray()) {
System.out.println(value) ; Ascending Sorted Array
5 (O
1
2
Array descending = new DescendingSortedArray (array) ; 3
descending.sort() ; 4
System.out.println ("\nDescending Sorted Array") ; .
System.out.println("----——————————————————— ") ; Descending Sorted Array
for (int value : descending.getArray()) { | TTTTTTTTTTTTTTTTTTTTTTT
System.out.println(value) ; 4
} 3
} 2
} 1

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 79

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit

= Verwendung des Muster,
® um die invarianten Teile eines Algorithmus genau einmal festzulegen; konkrete Ausfiihrung
der variierenden Teile wird den Unterklassen tberlassen
® wenn gemeinsames Verhalten von Unterklassen in einer Oberklasse realisiert werden soll;
Vermeidung der Duplikation von Code

StrUktur AbstractClass
imitiveO tion]
templateMethod() = - + = = = = = = ?T'm' iveOperationl()
Tl Simveopersions
- . @ teCl
Definiert abstrakte primitive QneIereiass A
Operationen und implementiert primitiveOperation1() .
. die Schabl i thod | primitiveOperation2() Operationen der abstrakten
ie Schablonenmethode Ay

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 80

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit

= Verwendung des Muster,

® um die invarianten Teile eines Algorithmus genau einmal festzulegen; konkrete Ausfiihrung
der variierenden Teile wird den Unterklassen tberlassen

den soll;
= Grundlegende Technik zur Wiederverwendung von Code

Strul = Fur Klassenbibliotheken, um das gemeinsame Verhalten

in Bibliotheksklassen darzustellen

= Realisieren das Hollywood-Prinzip
»Don't call us, we'll call you«

Definiert OO LIranNetcT rJllllllLch 1 4 E 1 —
Operationen und implementiert primitiveOperation]1()
die Schablonenmethode REpItiveCpelationz

Implementiert die primitiven
Operationen der abstrakten
Oberklasse.

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 81

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

Softwaretechnik 2

7.2.1.
7.2.2.
7.2.3.
7.24.
7.2.5.
7.2.6.
7.2.7.
7.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 82

Zustand-Muster (objektbasiertes Verhaltensmuster)

Problemstellung

= Verhaltenszustandsautomat ist programmatisch umzusetzen

stm Tempomat]

geschwindigkeitSetzen() rﬁusgweschalte[] :

ausschalten()

ausschalten()

'\ regeln() -

[Eingeschaltet . geschwindigkeitSetzen() Regelnd J
. .
/AN AN
geschwindigkeitSetzen() regeln{)

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 83

Zustand-Muster (objektbasiertes Verhaltensmuster)

stm Tempomat

geschwindigkeitSetzen()

Ausgeschaltet |[€————

ausschalten() /]\

ausschalten()

Losungsansatz |

~ regeln() N S

[Eingeschaltet J| geschwindigkeitSetzen() /]\ Regelnﬂ
geschwindigkeitSetzen() regeln(
Tempomat Zustand {abstract}
zustand
> +ausschalten()

+ausschalten() //Request() +geschwindigkeitSetzen()
+geschwindigkeitSetzen() //Request() +regeln()
+regeln() //Request() Z>
+setzeAktuellerZustand(z:Zustand)

Ausgeschaltet Eingeschaltet Regelnd
+Ausgeschaltet(t:Tempomat) +Eingeschaltet(t:Tempomat) +Regelnd(t:Tempomat)
+ausschalten() +ausschalten() +ausschalten()
+geschwindigkeitSetzen() +geschwindigkeitSetzen() +geschwindigkeitSetzen()
+regeln() +regeln() +regeln()

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 84

Zustand-Muster (objektbasiertes Verhaltensmuster)

Losungsansatz

stm Tempomat

geschwindigkeitSetzen()

ausschalten() /]\

(.

L/

regeln()

Ausgeschaltet |[€————

ausschalten()

public class Tempomat {

public Tempomat () {

}

Tempomat }

+ausschalten() //Request()
+geschwindigkeitSetzen() //Reque }
+regeln() //Request()

+setzeAktuellerzZustand(z:Zustand

}

public void regeln() {

}
Ausgeschaltet

ubli id halt
+Ausgeschaltet (t:Tempon public void ausschalten() {

+ausschalten() }
+geschwindigkeitSetzen(}

+regeln()

private Zustand aktuellerZustand;

aktuellerZustand.regeln() ;

aktuellerZustand.ausschalten() ;

public Zustand getAktuellerZustand() ({
return aktuellerZustand;

public void geschwindigkeitSetzen () {
aktuellerZustand.geschwindigkeitSetzen() ;

setBAktuellerZustand (new Ausgeschaltet (this)) ;

public void setAktuellerZustand(Zustand aktuellerZustand) ({
this.aktuellerZustand = aktuellerZustand;

System.out.println ("Setze Zustand auf: "+ aktuellerZustand) ;

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 85

stm Tempomat

public abstract class Zustand {
protected Tempomat tempomat;
public Zustand (Tempomat tempomat) {
this.tempomat = tempomat; ‘haltensmuster) X
} ausschalten()
public abstract void geschwindigkeitSetzen() ;
public abstract void regeln() ;

geschwindigkeitSetzen()

ublic abstract void ausschalten() ; regeln()
Y ~
} Eingeschaltet | geschwindigkeitSetzen) ~| Regelnd

Ausgeschaltet |[€————

ausschalten()

1

public class Ausgeschaltet extends Zustand {

public Ausgeschaltet (Tempomat tempomat) {
super (tempomat) ;
}

@Override
public String toString() {
return "Ausgeschaltet";

}

@Override

public void geschwindigkeitSetzen() ({
System.out.println ("Geschwindigkeit wird gesetzt") ;
tempomat.setAktuellerZustand (new Eingeschaltet (tempomat)) ;

}

@Override
public void regeln() {
System.out.println("Es kann nicht geregelt werden, wenn keine Geschwindigkeit gesetzt wurde") ;

}

@Override
public void ausschalten() ({
System.out.println ("Tempomat bleibt weiterhin ausgeschaltet") ;

}

n()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 86

stm Tempomat

geschwindigkeitSetzen()

Ausgeschaltet |[€————

Zustand-Muster (objektbasiertes Verhaltensmuster)

ausschalten() /]\

ausschalten()

Losungsansatz

N\ regeln() ~
[Eingeschaltet | geschwindigkeitSetzen) ~| Regelnd
J {

public class TempomatTest ({

geschwindigkeitSetzen() regeln()

public static void main(String[] args) {
Tempomat tempomat = new Tempomat() ;

tempomat.geschwindigkeitSetzen () ;
tempomat.regeln() ;
tempomat.geschwindigkeitSetzen () ; []

tempomat.ausschalten() ; Ausgabe
tempomat.geschwindigkeitSetzen () ; - Setze Zustand auf: Ausgeschaltet
tempomat.regeln() ; Setze Zustand auf: Eingeschaltet
tempomat.regeln() ; Geschwindigkeit wird neu gesetzt
tempomat.ausschalten () ; Geschwindigkeit wird geregelt

} Setze Zustand auf: Regelnd

Geschwindigkeit wird gesetzt
Setze Zustand auf: Eingeschaltet

Tempomat wird ausgeschaltet
Setze Zustand auf: Ausgeschaltet
Geschwindigkeit wird gesetzt
Setze Zustand auf: Eingeschaltet
Geschwindigkeit wird geregelt
Setze Zustand auf: Regelnd

. Geschwindigkeit wird weiter geregelt
+Ausgeschaltet(t:Tempomat) Tommomat wgrd susgeschaltet gereg

Ausgeschaltet

+aUSSCh?1t?n(). Setze Zustand auf: Ausgeschaltet
+geschwindigkeitSetzen() - - - - - <7
+regeln() +regeln() +regeln()

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 87

Zustand-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit

= Verwendung des Muster,

® um es einem Objekt zu ermoglichen, sein Verhalten zu andern, wenn sein interner Zustand

sich andert.

® essieht so aus, als ob das Objekt seine Klasse gewechselt hat.

Struktur

Gemeinsame Schnittstelle
aller Zustande.

o
. . Context State
Context ist die Klasse, (;Tﬂt&
deren Objekte mehrere/
innere zustande ein- i maca’ +Handle)
. |
nehmen kdnnen. | é‘_\. VAN
|
|
- ConcreteStateA [ConcreteStateB
' : state.Handle()
Immer wenn eine Anfrage an _ e]

ein Context-Objekt ein- _~~
geht, wird sie an den
entsprechenden Zustand|
weitergereicht

Softwaretechnik 2

Bearbeiten den Anfragen|
zustandsspezifisch

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 88

Zustand-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit

= Verwendung des Muster,

® um es einem Objekt zu ermoglichen, sein Verhalten zu andern, wenn sein interner Zustand

sich andert.
[)

Strub = Grundlegende Technik zur Realisierung verschiedener

3 Schnittstelle

zustandsbasierter Verhaltensweisen. stande.

| 4

Contextist = Kapselung jedes Zustands in einer eigenen Klasse
deren Objek ermoglicht gute Anderbar- und Wartbarkeit

Innere zust

nehmen)
|
|
1

| |

Immer wenn eine Anfrage an state.Handle()
ein Context-Objekt ein-

ConcreteStateA IConcreteStateB

+Handle() +Handle()

geht, wird sie an den
entsprechenden Zustand
weitergereicht

Softwaretechnik 2

Bearbeiten den Anfragen|
zustandsspezifisch

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 89

Struktur

7. Entwurfsmuster

7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele fur Muster

7.2.1.
71.2.2.
7.2.3.
7.24.
7.2.5.
7.2.6.
7.2.7.
7.2.8.
1.2.9.

Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
Singleton-Muster (objektbasiertes Erzeugungsmuster)
Kompositum-Muster (objektbasiertes Strukturmuster)
Proxy-Muster (objektbasiertes Strukturmuster)

Fassaden-Muster (objektbasiertes Strukturmuster)
Beobachter-Muster (objektbasiertes Verhaltensmuster)
Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
Zustands-Muster (objektbasiertes Verhaltensmuster)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 90

Entwurfsmuster

Die klassischen Entwurfsmuster

Erzeugende Muster

Strukturelle Muster

Verhaltensmuster

Singleton (Einzelstiick) Facade(Fassade) Mediator (Vermittler)
Prototype (Prototyp) Decorator (Dekorierer) lterator
Factory Method (Fabrikmethode) Bridge (Bricke) Interpreter

Builder (Erbauer)

Composite (Kompositum)

Command (Kommando)

Abstract Factory (Abstrakte Fabrik) Adapter Chain of Responsibility (Zustandigkeitskette)
Flyweight (Fliegengewicht) [Memento
Proxy (Stellvertreter) Observer (Beobachter)
State (Zustand)

Strategy (Strategie)

Template Method (Schablonenmethode)

Visitor (Besucher)

Softwaretechnik 2

Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 91

Fragen

P

=
«*

Softwaretechnik 2 Entwurfsmuster = SS 2021 = ©Prof. Dr. Sabine Sachweh = Folie 92

