
© 2019 - Prof. Dr. Inga Marina Saatz

Datenbanken 1
Gespeicherte Funktionen und

Prozeduren

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 2Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 2

30Gespeicherte Prozeduren5

21SQL-Anfragen in Datenbankprogrammen4

16Gespeicherte Funktionen3

13Aktive Datenbank2

2Wiederholung1

Inhaltsübersicht

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 3Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 3

Transaktionen

Begin of Transaction (BOT)
Lese Kontostand a=-100
Lese Zahlungseingang b=100
Schreibe Kontostand a:=a +b
Schreibe Zahlungseingang b:=0

End of Transaction (EOT)

a= -100
b= 100

a= 0
b= 0

a= 0
b= 100Commit

(EOT)

Rollback

Commit Rollback

Eine Transaktion überführt einen konsistenten Datenbankzustand in einen

wiederum konsistenten Datenbankzustand.

Eine Transaktion ist eine inhaltlich zusammenhängende Menge von
Datenbankoperationen, die ganz oder gar nicht ausgeführt werden.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 4Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 4

Syntax der SELECT-Anweisung

SELECT <Spalte1>, ..., <Spalten>

FROM <Tabelle1>, ..., <Tabellem>

Was wird gesucht?

In welchen Tabellen?

Auswahlbedingungen?

Gruppierung erforderlich?

Gruppierungsbedingung?

Sortierung?

WHERE <Bedingung>

ORDER BY <Attribut-ListeS>

Projektion (Festlegung der Ausgabespalten)

Join (Angabe der Tabellen und Verbundbedingung)

Selektionsbedingung (Auswahl der Tupel)
– optional

Sortierreihenfolge der Tupel in der Ergebnistabelle
– optional

GROUP BY <Spalte1>, ..., <Spalten>

Gruppenbildung mit gleichen Werten
– optional

HAVING <Bedingung>

Selektion von Gruppen
– optional unter group by

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 5Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 5

INNER-JOIN Arten

 EQUI-JOIN: Überprüft auf Gleichheit von Attributen

 Vereinfachte Schreibweise

 NATURAL JOIN: EQUI-JOIN über gleichbenannte Attribute

SELECT a.Artikelnummer, Artikelname, Autor
FROM Artikel a JOIN Warenkorb w

ON a.Artikelnummer = w.Artikelnummer

SELECT w.Artikelnummer, Artikelname, Autor
FROM Artikel a JOIN Warenkorb w

USING (Artikelnummer)

Attributliste möglich

SELECT w.Artikelnummer, Artikelname, Autor
FROM Artikel a Natural JOIN Warenkorb w

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 6Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 6

Übersicht Verbundoperationen

ht
tp

://
ja

va
re

vi
si

te
d.

bl
og

sp
ot

.d
e/

20
12

/1
1/

h
ow

-t
o

-jo
in

-t
hr

e
e-

ta
bl

e
s-

in
-s

ql
-

qu
e

ry
-m

ys
ql

-s
q

ls
er

ve
r.

ht
m

l#
m

or
e

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 7Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 7

Die HAVING-Klausel

Auswahlbedingungen, welche sich auf das Ergebnis einer Gruppierung
beziehen, müssen in der HAVING-Klausel angegeben werden.

SQL-Anfrage mit bedingter Gruppierung Interne Auswertungsreihenfolge

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 8Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 8

Unterabfragen – Verwendung und Ergebnismengen

Die Unterabfrage liefert
... einen einzelnen Wert

 SELECT-Clause
• als Spaltenangabe

 WHERE-Clause
• einer SELECT-Abfrage

• einer DELETE-Anweisung

• einer UPDATE-Anweisung

 SET-Clause
• einer UPDATE-Anweisung

… eine Menge von Tupeln

 FROM-Clause
 WHERE-Clause

• einer SELECT-Abfrage

• einer DELETE-Anweisung

• einer UPDATE-Anweisung

UPDATE Kunde
SET Ort = (SELECT Ort FROM Kunde

WHERE Kundennummer=2310)
WHERE Kundennummer=8536

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 9Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 9

Beispiel „Finde alle Artikel, die an jedem Standort mehr als viermal

vorhanden sind [und hierfür auch Lagerplätze existieren].“

Vergleichsoperator - ALL2

Ist die Ergebnismenge der Unterabfrage leer, dann liefert ein Vergleich
mit dem ALL-Operator true. Diese Ergebnisse können durch eine
zusätzliche Existenzbedingung ausgeschlossen werden.

SELECT Artikelnummer, Artikelname
FROM Artikel a
WHERE 4 < ALL(SELECT Lagerbestand FROM Lager

WHERE ANummer=a.Artikelnummer)
AND EXISTS(SELECT Lagerbestand FROM Lager

WHERE ANummer=a.Artikelnummer)

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 10Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 10

Join oder Subquery?

„Finde alle Artikel, die keinen Lagerplatz zugewiesen bekommen haben“

 Subquery mit IN-Operator

 Subquery mit Exists-Operator

 Mit Left-Join

SELECT DISTINCT Artikelname, Autor, Ausgabe, ANummer
FROM Artikel a LEFT JOIN Lager l

ON a.Artikelnummer = l.ANummer
WHERE ANummer IS NULL

SELECT Artikelname, Autor, Ausgabe FROM Artikel a
WHERE NOT EXISTS (SELECT ANummer From Lager

WHERE ANummer=a.Artikelnummer)

SELECT Artikelnummer FROM Artikel
WHERE Artikelnummer NOT IN

(SELECT ANummer FROM Lager WHERE ANummer IS NOT NULL)

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 11Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 11

Join oder Subquery?

„Finde alle Artikel, zu denen an (mind.) einem Standort mehr als 2 Exemplare
vorhanden sind“

• Unterabfrage mit Gruppierung

• Verbundoperation mit bedingter Gruppierung

SELECT Artikelname, Autor, Ausgabe
FROM Artikel a
WHERE 2 < ANY (SELECT SUM(Lagerbestand) FROM Lager

WHERE ANummer=a.Artikelnummer
GROUP BY Standort)

SELECT DISTINCT Artikelname, Autor, Ausgabe
FROM Artikel a JOIN Lager l On a.Artikelnummer=l.ANummer
GROUP BY Artikelnummer, Standort
HAVING 2<SUM(Lagerbestand)

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 12Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 12

Strukturierung von Anfragen

Unstrukturierte Abfrage

Mit Unterabfrage
strukturiert:

SELECT Lagernummer
FROM Lager
WHERE Standort = 'INF'
AND Lagerbestand IS NULL AND ANummer IS NULL

SELECT frei.Lagernummer
FROM (SELECT * FROM Lager

WHERE Lagerbestand IS NULL
AND ANummer IS NULL) frei

WHERE Standort = 'INF'

Eine Unterabfrage in der FROM-Klausel stellt eine temporäre Benutzersicht (Inline
View) dar. Diese ist nur für diese Anfrage verfügbar. Mit der WITH-Klausel kann die
Unterabfrage zu Beginn der Abfrage deklariert werden.

WITH frei AS (SELECT * FROM Lager
WHERE Lagerbestand IS NULL
AND ANummer IS NULL)

SELECT Lagernummer FROM frei
WHERE Standort = 'INF'

Mit WITH-Präfix:
(Sub-Query Factoring)

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 13Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 13

30Gespeicherte Prozeduren5

21SQL-Anfragen in Datenbankprogrammen4

16Gespeicherte Funktionen3

13Aktive Datenbank2

2Wiederholung1

Inhaltsübersicht

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 14Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 14

Aktive Datenbank

DD

DBMS

Programm

Anwendungsfunktionalität
in DBMS-Sprache

Interpretiert Programm

Datenbankserver
wird zum

Applikationsserver

Client

Bei einer aktiven Datenbank übernimmt das DBMS
Anwendungsfunktionalitäten vom Client.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 15Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 15

Programmierkonzepte (Datenbank)

 Gespeicherte Funktionen
(stored function)

 Gespeicherte Prozeduren
(stored procedures)

 Eventgesteuerte Prozeduren
(Trigger)

Prozedur
wohnortwechsel

IN

Funktion
kundenliste

IN OUT

Trigger
InsertKunden

EVENT

OUT

DML

CALL kundenliste('Dortmund')

SELECT kundenanrede(Kundennummer)
FROM Kunde

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 16Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 16

30Gespeicherte Prozeduren5

21SQL-Anfragen in Datenbankprogrammen4

16Gespeicherte Funktionen3

13Aktive Datenbank2

2Wiederholung1

Inhaltsübersicht

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 17Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 17

Konzept der Funktion

Konzept der Funktion

In Datenbanken

• Durch das DBMS bereitgestellte Funktionen

o Spaltenfunktionen avg(*), sum(*), …

o Datumsfunktionen (now(), extract(year from date)…)

o Zeichenkettenfunktionen (Concat(), …)

o Mathematische Funktionen (z.B. round(), sin(), …)

• Benutzerdefinierte Funktion

SELECT kundenanrede(Kundennummer)
FROM Kunde

Funktion
IN OUT

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 18Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 18

CREATE OR REPLACE
FUNCTION KEHRWERT
(
ZAHL IN NUMBER

) RETURN NUMBER AS
BEGIN
RETURN NULL;

END KEHRWERT;

SQLDeveloper - Funktionen anlegen

Rechter Mausklick
auf Funktion

kompilieren

call-by-value (Standard)
call-by-reference (keine Kopie)

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 19Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 19

CREATE OR REPLACE FUNCTION name(<variablenliste>) RETURN <datentyp>
AS

<variablendeklaration>
BEGIN

<anweisungen>
RETURN rueckgabewert;

EXCEPTION
<ausnahmebehandlung>

END;

Eine gespeicherte Funktion

Syntax

Beispiel CREATE OR REPLACE FUNCTION kehrwert (zahl IN INTEGER) RETURN
NUMBER
AS

rueckgabe NUMERIC(9,8);
BEGIN

rueckgabe:=1/zahl;
RETURN rueckgabe;

END;

Hoffentlich ist zahl <> 0

Vorsicht Falle!
RETURN Numeric  Rückgabewert gerundet ohne Nachkommastellen
RETURN Number  Rückgabewert mit Nachkommastellen

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 20Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 20

Fallunterscheidung und Ausnahmebehandlung

CREATE FUNCTION name (…)
AS

myfehlermeldung EXCEPTION;
BEGIN

IF <bedingung>
THEN

RAISE myfehlermeldung;
END IF;

EXCEPTION
WHEN myfehlermeldung
THEN raise_application_error(-20500,'Mein Fehlertext');

END;

Fehlernummer

Fehler werfen

Fehler behandeln

Abbruch der Bearbeitung
signalisieren

Fehler deklarieren

IF <bedingung> THEN <anweisungen>
[ELSIF <bedingung> THEN <anweisungen>]
[ELSE <anweisungen>]

END IF;

Syntax

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 21Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 21

30Gespeicherte Prozeduren5

21SQL-Anfragen in Datenbankprogrammen4

16Gespeicherte Funktionen3

13Aktive Datenbank2

2Wiederholung1

Inhaltsübersicht

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 22Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 22

Variablenzuweisung durch SQL-Anfragen

Deklaration lokaler Variablen

Wertzuweisung

CREATE OR REPLACE FUNCTION kundenanrede2 (knr IN INTEGER) RETURN VARCHAR
AS

tmp_anrede CHAR(4);
tmp_nachname VARCHAR(30);

BEGIN
SELECT anrede, nachname INTO tmp_anrede, tmp_nachname
FROM Kunde
WHERE Kundennummer=knr;
RETURN kundenanrede(tmp_anrede, tmp_nachname);

END;

SELECT spalte[,...] INTO var_name[,...] FROM tabelle

var_name := expr | variable | konstante

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Die Wertzuweisung von lokalem Variablen kann durch SQL-Anfragen erfolgen.
Dabei müssen die Variablenbezeichnungen sich von den Bezeichnungen der
selektierten Attribute unterscheiden.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 23Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 23

Behandlung mengenwertiger SQL-Anfragen

 Bisher:

• Variablen werden Werte zugewiesen durch Anfragen, die ein Tupel zurück
liefern:

 Jetzt:

• Auswertung von mengenwertiger Anfragen im DB-Programm

• Beispiel: Erstellung einer Funktion, die eine Kundenliste erstellt

• Lösungsidee

o Die einzelnen Tupel der Ergebnismenge werden nacheinander in einer
Schleife durchlaufen und verarbeitet

SELECT nachname INTO name
FROM Kunde
WHERE Kundennummer=2310;

SELECT Kundenliste() FROM dual;

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 24Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 24

Cursor-Konzept

 DBMS

 Cursor

SELECT Kundennummer, Nachname, Anrede
FROM Kunde

next()

Initial

next()

Metadata Spalte 1 Spalte 2 Spalte 3

Kundennum
mer

Nachname Anrede

next()

Satzanforderung
(fetch)

Cursor liefert ein
Ergebnistupel

next()

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 25Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 25

Definition eines Cursors

Öffnen des Cursors (Berechnen der Ergebnismenge)

Zugriff auf Tupel (i.d.R. in einer Schleife)

Schließen des Cursors, Freigabe der Tupelmenge.
Bei Oracle erfolgt das Öffnen und Schließen des Cursors implizit bpsw. in einer For-Schleife

Cursor für mengenwertige Abfragen

OPEN kundencursor;

FETCH kundencursor INTO <variable>

CLOSE kundencursor;

DECLARE CURSOR kundencursor
IS SELECT Nachname FROM Kunde;

Ein Cursor ist ein Zeiger auf ein Tupel der Ergebnismenge einer SQL-Anfrage.
Aus dem Cursor werden solange Tupel für Tupel ausgelesen, bis keine
weiteren Tupel im Cursor mehr vorhanden sind.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 26Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 26

Funktion Kundenliste mit Cursor

CREATE OR REPLACE FUNCTION KUNDENLISTE
RETURN VARCHAR2
AS

kundenname varchar(30);
liste varchar(210):= '';
CURSOR kundencursor IS

SELECT nachname FROM Kunde;
BEGIN

FOR k in kundencursor LOOP
liste := liste||TRIM(k.nachname)||':';

END LOOP;
RETURN liste;

END KUNDENLISTE;

Bei Oracle erfolgt das Öffnen und Schließen des Cursors implizit in der For-Schleife

Cursor deklarieren

Durchlaufen der Ergebnismenge

Implizites Schließen des Cursors

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 27Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 27

Cursor-Status

Den Status eines Cursors beschreiben seine vier Attribute Found, NotFound,
Rowcount und isOpen. Mit CURRENT OF wird auf das aktuelle Tupel verwiesen.

liste := liste||TRIM(k.nachname)||':'||kundencursor%rowcount;

Beispiel:

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 28Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 28

Kontrollstrukturen – Zählschleifen

 FOR-Schleife

• Syntax

• Beispiele

FOR <var> IN [REVERSE] von … bis LOOP
[exit [when <bedingung>]]

END LOOP

FOR i IN 1..10 LOOP
-- tue was

END LOOP;

FOR yyyy IN (SELECT Preis FROM Artikel) LOOP
-- tue was

END LOOP;

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 29Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 29

Kontrollstrukturen - Schleifen

 WHILE-Schleife

 REPEAT-Schleife

WHILE <bedingung> LOOP
<anweisungen>

END LOOP

WHILE i < 10 LOOP
i:=i+1;

END LOOP;

LOOP
<anweisungen>
EXIT [WHEN <bedingung>];

END LOOP;

LOOP
i:= i+1;

EXIT WHEN i=10;
END LOOP;

Bei der WHILE-Schleife wird erst die Abbruchbedingung geprüft, bevor die
Anweisungen ausgeführt werden. Bei der REPEAT-Schleife werden die
Anweisungen zuerst ausgeführt, bevor die Abbruchbedingung geprüft wird.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 30Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 30

30Gespeicherte Prozeduren5

21SQL-Anfragen in Datenbankprogrammen4

16Gespeicherte Funktionen3

13Aktive Datenbank2

2Wiederholung1

Inhaltsübersicht

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 31Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 31

Gespeicherte Prozeduren - Beispiel

Syntax

Definition

Aufruf

CREATE PROCEDURE <procedure_name>
[(<argument1>, ...)]

{IS | AS}
[<Deklarationen lokaler variablen>]

BEGIN
<ausfuehrbare anweisungen>

[EXCEPTION <ausnahmebehandlung>]

END [<procedure_name>]

Anm.: - IS und AS können bei der Prozedurdefinition synonym verwendet werden, jedoch nicht bei Cursor, Tabellen und Viewdefinitionen.
- "set serveroutput on" ist zur Anzeige der Konsolenausgabe dbms_output.put_line(…) erforderlich (vgl. Folie 11)

CREATE OR REPLACE PROCEDURE kundenanrede_proc (knr IN INTEGER)
IS

anrede VARCHAR(60);
BEGIN

SELECT Kundenanrede2(knr) INTO anrede FROM dual;
dbms_output.put_line(anrede);

END;

CALL kundenanrede_proc(2310);

Konsolenausgabe

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 32Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 32

SQLDeveloper – Prozeduren anlegen

kompilieren

call-by-value (Standard)
call-by-reference (keine Kopie)

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 33Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 33

Gespeicherte Prozedur- Aufruf

IN-Parameter

Prozedur
Wohnortswechsel

IN OUT

OUT-ParameterIN OUT-Parameter

View
KundenAus
Dortmund

View
KundenAus

Bochum

Wohnortwechsel

CALL Wohnortswechsel (8524, 'Dortmund', 'Bochum')

Oracle besitzt ein Exception-Mechanismus, daher wird bei der Implementierung kein Rückgabeparameter benötigt.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 34Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 34

Gespeicherte Prozedur Wohnortwechsel

CREATE PROCEDURE Wohnortwechsel (
Knr IN INT,
alterOrt IN VARCHAR2,
neuerOrt IN VARCHAR2)

IS
wohnort VARCHAR2(200);
falscherWohnort EXCEPTION;

BEGIN
SELECT Ort INTO wohnort

FROM Kunde
WHERE Kundennummer = Knr;
IF alterOrt = RTRIM(wohnort,' ') THEN

UPDATE Kunde SET Ort = neuerOrt
WHERE Kundennummer=Knr;

ELSE
RAISE falscherWohnort;

END IF;
EXCEPTION

WHEN falscherWohnort
THEN raise_application_error

(-20500,'Aktueller Wohnort fehlerh.');
END;

Selektion des
bisherigen Wohnortes

Änderung des Wohnortes
Prüfung der Eingaben

Fehlermeldung werfen

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 35Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 35

PROCEDURE PreisAenderung (anr IN INTEGER, aenderung IN
Number,neuerPreis OUT Number)
AS
BEGIN

UPDATE Artikel
SET preis= preis*(1+aenderung/100)
WHERE Artikelnummer=anr
RETURNING preis INTO neuerPreis;

END;
/
CREATE OR REPLACE PROCEDURE SONDERANGEBOT (anr IN
INTEGER, prozent IN INTEGER)
IS sonderpreis NUMBER;
BEGIN
PREISAENDERUNG(anr,prozent, sonderpreis);
dbms_output.put_line('Der Sonderpreis des Artikels: ' || anr || ' ist: ' ||

sonderpreis);
END SONDERANGEBOT;
/
set serveroutput on;
CALL SONDERANGEBOT(4812,-10);

Beispiel: Änderungsoperationen durch Prozeduren

Aufruf der Prozedur Preisänderung aus der Prozedur Sonderangebot:

Durchführung der Preisänderung:

Wirkung: neuerPreis:=preis

In dieser Prozedur wird der Preis eines Artikels um einen Prozentsatz geändert.
Der neue (geänderte) Preis wird über einen OUT-Parameter zurückgeliefert.

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 36Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 36

Zusammenfassung

Gespeicherte
Prozedur

Gespeicherte
Funktion

Aufruf CALL SELECT

Aufruf-
parameter

IN
INOUT
OUT

IN

Rückgabe-
werte

Mehrere OUT-
Parameter

Ein Wert

Erlaubte
Befehle

DRL
DML
DDL
DCL

DRL

Aufruf von Funktionen
Prozeduren

Funktionen

i.d.R. nicht direkt portierbar zwischen verschiedenen Datenbanken

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 37Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 37

Programmierkonzepte (Datenbank)

 Gespeicherte Funktionen
(stored function)

 Gespeicherte Prozeduren
(stored procedures)

 Eventgesteuerte Prozeduren
(Trigger)

Prozedur
wohnortwechsel

IN

Funktion
kundenliste

IN OUT

Trigger
InsertKunden

EVENT

OUT

DML

CALL kundenliste('Dortmund')

SELECT kundenanrede(Kundennummer)
FROM Kunde

Prof. Dr. I. Saatz Datenbanken 1 Fachbereich Informatik 38Prof. Dr. I. M. Saatz Datenbanken 1 Fachbereich Informatik 38

Vielen Dank
für Ihre Aufmerksamkeit !

