

Theoretical Exercises

Excercise 5.1: (Theoretical) Central tendencies and statistical deviation

In a survey, send to several companies, the question

"How large have been your expenses (in thousand Euros) in the last year?"

was asked. 11 companies answered it with the following result:

company	1	2	3	4	5	6	7	8	9	10	11
expenses	110	75	70	65	55	70	140	90	90	55	90

- Calculate the arithmetic mean, the range and the empirical standard deviation \tilde{s} .
- Calculate and draw the empirical distribution function. Then, determine the upper quartile, lower quartile and median. Draw a box-plot.
- Derive a linear transformation $y_i = ax_i$, such that the empirical variance of y_i equals to 1.

Excercise 5.2: (Theoretical) Small proofs

Let x_1, \dots, x_n be observations of a metric variable X . Show that the following equations, given in the lecture, hold:

$$\bullet \sum_{i=1}^n (x_i - \bar{x}) = 0$$

$$\bullet \tilde{s}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$$

Practical Exercises

Exercise 5.3: (Practical) Frequencies of data

Consider the Ames housing dataset given in Exercise 2. Load the dataset with the help of pandas and perform the following tasks:

- a) Compute the median, mean, both quartile and both decile of the variable "SalePrice".
- b) Compute the range, quartile difference and empirical standard deviation. Compare these values and decide which value seems to be more precise, i.e. describes the smallest range.
- c) Create box-plots of the variables "Year Built" and "Year Remod/Add". Compare both plots.