

Theoretical Exercises

Exercise 5.1: (Theoretical) Marginal frequencies

For the retailers from the electronics sector, the following two characteristics were determined:

- X: number of employees
- Y: number of televisions sold

The following contingency table is obtained:

X \ Y	3	5	6	8	10	11	12	15
2	3	2	0	0	0	0	0	0
3	1	2	2	0	0	0	0	0
5	1	0	4	4	1	0	0	0
8	0	1	4	5	3	5	2	0
10	0	0	0	1	1	0	3	5

- Determine the marginal frequencies of X and of Y as well as the conditional relative frequencies of Y under the condition $X = 8$.
- Among the retailers with eight employees, compute the proportion of those who have sold ten television sets.
- Compute the proportion of retailers who have eight employees and have sold no more than ten television sets.
- Compute the proportion of retailers who have sold no more than ten televisions.

Excercise 5.2: (Theoretical) Correlation coefficient

For the companies in the “Chaos” working group of a business association, the following table contains the annual sales (feature Y) and advertising expenditure (feature X) in millions.

Company	1	2	3	4	5	6	7
annual sales	90	110	90	60	120	70	90
advertising expenditure	7	6.5	9	10	9.5	6	8

- Create a scatter plot of the data.
- Determine the empirical variance \tilde{s}_{XY} and the correlation coefficient r_{XY} according to the lecture. Interpret the result!

Excercise 5.3: (Theoretical) Steiners theorem

Show that the Identity of Steiners theorem holds: Let $x_1, \dots, x_n \in \mathbb{R}$, $a \in \mathbb{R}$. Then, there holds

$$\sum_{i=1}^n (x_i - a)^2 = \sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - a)^2.$$

Practical Exercises

Excercise 5.4: (Practical) Anscombe's quartet

Consider the data of the Anscombe's quartet. Load the data with *pandas* and verify that all data pairs have (nearly) the same descriptive statistics (compare mean of x and y, empirical variance of x and y and correlation between x and y)

	x	y	x	y	x	y	x	y
0	10	8.04	10	9.14	10	7.46	8	6.58
1	8	6.95	8	8.14	8	6.77	8	5.76
2	13	7.58	13	8.74	13	12.74	8	7.71
3	9	8.81	9	8.77	9	7.11	8	8.84
4	11	8.33	11	9.26	11	7.81	8	8.47
5	14	9.96	14	8.10	14	8.84	8	7.04
6	6	7.24	6	6.13	6	6.08	8	5.25
7	4	4.26	4	3.10	4	5.39	19	12.50
8	12	10.84	12	9.13	12	8.15	8	5.56
9	7	4.82	7	7.26	7	6.42	8	7.91
10	5	5.68	5	4.74	5	5.73	8	6.89

Excercise 5.5: (Practical) Ames housing

Consider the Ames housing dataset. Write a program that takes two arbitrary columns of the dataset, then computes the contingency table and the corrected Pearson contingency coefficient. What are the resulting correlations?

Hints:

- A contingency table can be computed with *pandas.crosstab*
- The *scipy* package can compute the Pearson contingency coefficient with *scipy.stats.contingency.association*