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Data Science
Recap Frequencies

A histogram is oneway to present frequencies of continuous /metric data. For this, the

data is classified into classes (see one of the previous slides) with class boundaries

c0, . . . , ck. Then, the jth class, for j = 1, . . . , k, is represented by a box starting from

cj−1 to cj (width equals to dj = cj − cj−1) and height

gj :=
fj

dj

=
fj

cj − cj−1
.

The area of the box equals to the frequency of the class:

dj · gj = dj

fj

dj

= fj

The complete area of all boxes of the histogram equals to 1.

If every class width has the same size, the height gj is proportional to the relative

frequency fj.
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Data Science
RecapMotivation

For an ordinal or continuous variable X with observations x1 . . . xn with different values

a1, . . . , al. We define the absolute cumulative frequency as

H(x) =
∑
aj≤x

h(aj)

and the empirical distribution function Fn : R → [0, 1] as

Fn(x) =
∑
aj≤x

f (aj) =
H(x)

n
.
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Data Science
RecapMotivation

To describe a set of observations it could be useful to reduce in on one or few charac-

teristic values - or central tendencies.

Which value is the most common?

Which value is the one in the middle?

Which value is the averaged one?

Depending on the observations and question different values could be interesting.
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Data Science
Recap Overview

Types of data

nominal ordinal metric

Mode X X (X)

Median / quartile 7 X X

Arithmetic mean 7 7 X

Using the mode value for metric data is not recommended

Outlier

Mode Median / quartile Arithmetic mean

Robustness X X 7
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Data Science
Recap Box plots

zlower x0.25 xmed x0.75 zupper
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Data Science
Recap Range

Let x1, . . . , xn be observations of a metric variable X . Then, we define the range r as the

difference between the minimal x(1) and the maximal x(n) value:

r = x(n) − x(1)

r only depends on the minimal and maximal value. All further information on

x1, . . . , xn are lost.

r is not robust concerning outlier!
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Data Science
Recap Quartile range

Let x1, . . . , xn be observations of ametric variable X . Then, we define the quartile range

(also interquartile range) qd as the difference between the upper quartile x0.75 and

lower quartile x0.25 value:

qd = x0.75 − x0.25

qd is robust concerning outlier

50% of the ”central” observations are given between x0.25 and x0.75
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Data Science
Today

Empirical variance and bivariate characteristics
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Data Science

Statistical dispersion
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Data Science
Statistical dispersion Empirical variance

Let x1, . . . , xn be observations of ametric variable X and x̄ the corresponding arithmetic

mean. Then we define the empirical variance of x1, . . . , xn as the mean squared devia-

tion given by

s̃
2 =

1

n

[
(x1 − x̄)2 + · · ·+ (xn − x̄)2

]
=

1

n

n∑
i=1

(xi − x̄)2

Furthermore, we define

s̃ =
√
s̃2

as the empirical standard deviation.
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Data Science
Statistical dispersion Empirical variance

The suffix empirical is used to differentiate it from the variance of a random

variable (later!). The word shows, that the value was computed on concrete data.

Often (especially in software products), the sampling variance, given by

s
2 =

1

n− 1

n∑
i=1

(xi − x̄)2,

is preferred. Note that the difference is small for large n.

The empirical variance can also be computed by

s̃
2 =

1

n

n∑
i=1

x
2
i − x̄

2
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Data Science
Statistical dispersion Quartile range

Task: What is the empirical variance in the following example?

Daily temperature in °C at 10 o’clock (metric)

11.2 13.3 14.1 13.7 12.2 11.3 9.9

step result

x̄ 12.24

xi − x̄ -1.04, 1.06, 1.86, 1.46, -0.04, -0.94, -2.34

(xi − x̄)2 1.09, 1.12, 3.45, 2.12, 0.00, 0.89, 5.49
n∑

i=1

(xi − x̄)2 14.16

1
n

n∑
i=1

(xi − x̄)2 2.02
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Data Science
Statistical dispersion Empirical variance

Steiners theorem

Let x1, . . . , xn ∈ R, a ∈ R. Then, there holds

n∑
i=1

(xi − a)2 =

n∑
i=1

(xi − x̄)2 + n(x̄ − a)2
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Data Science
Statistical dispersion Empirical variance

Let x1, . . . , xn be observations of ametric variable X and s̃2X the corresponding empirical

variance. Furthermore, let s̃2Y be the empirical variance of the variable Y which is given

by the linear transformation

yi = axi + b for i ∈ {1, . . . , n}

with a,b ∈ R. Then, there holds:

s̃
2
Y = a

2
s̃
2
X .
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Data Science
Statistical dispersion Example

data mean median 0.25-quartile 0.75-quantile

Federal states 5169455.13 3262270.5 2035008.5 6641274.75

Large cities 330394.33 187119 128619 313420.5

data range quartile range empirical variance empirical standard deviation

Federal states 17197285 4606266.25 22795310650229.98 4774443.49

Large cities 3682192 184801.5 229138903806.70 478684.56
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Data Science

Bivariate characteristics
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Data Science
Bivariate characteristics

So far: Describing one variable with plots, frequencies, tendencies ... But, we have

already seen that data often consists of multiple variables.

Name Location Growth

Berlin North growing strongly
...

...
...

Dortmund North growing
...

...
...

If two variables are paired, i.e. they stem from the same observation, we call them

bivariate. The more general case is multivariate data, i.e. multiple variables which

stem from the same observation.
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Data Science
Bivariate characteristics

Is there a ”connection” or correlation between these variables? If x then y?

Task: Can you image variables which have a correlation?

Examples:

A larger person might have a larger shoe size

A faster car might have a longer braking distance

A younger house might be more expansive

...
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Data Science
Bivariate characteristics
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Data Science
Bivariate characteristics

How can we formalize such a correlation?

Describing correlation of two variables with a dimension number (correlation coeffi-

cient). There are different ways to compute a correlation coefficient depending on the

type of variables.

Nominal characteristics: Measures of association

Ordinal characteristics: Rank correlation coefficients

Metric characteristics: Correlation coefficients
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Data Science
Bivariate characteristics Frequencies

We the bivariate variable (X , Y), which consists of two variables X and Y with n ∈ N
observations x1, . . . xn and y1, . . . , yn.

Every entry of X equals to one of lX ∈ N with lX ≤ n different values a1, . . . , al.

Every entry of Y equals to one of lY ∈ N with lY ≤ n different values b1, . . . ,blY .

(X,Y) observation (x1, y1) (x2, y2) . . . (xn−1, yn−1) (xn, yn)

value (a1,b1) (a1,b2) . . . (alX−1,blY ) (alX ,blY )

X observation x1 x2 . . . xn−1 xn

value a1 a1 . . . alX−1 alX

Y observation y1 y2 . . . yn−1 yn

value b1 b2 . . . blY blY
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Data Science

Bivariate characteristics

Measure of association
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Data Science
Bivariate characteristics

Name Population Area Location Growth

1 Berlin 3782202 891.12 North growing strongly

2 Hamburg 1910160 755.09 North growing strongly
...

...
...

...
...

...

8 Leipzig 619879 297.80 South growing strongly

9 Dortmund 595471 280.71 North growing
...

...
...

...
...

...

Table: List of the largest cities (83 cities with more than 100000 inhabitants) of Germany adapted

from[1]. Added columns location (North, South) and Growth (shrinking, growing, growing strongly)
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Data Science
Bivariate characteristics

growing growing strongly shrinking
Growth

0

5
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15

20

25

30

35

40

North South
Location

0

10

20

30

40

50

h(growing) = 42, h(growingstrongly) = 32, h(shrinking) = 9

h(North) = 49, h(South) = 34

Task: Can we see a correlation between growth and location?
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Data Science
Bivariate characteristics

Consider both variables simultaneously, i.e. computing frequencies of every combina-

tion of the values.

”How many cities are growing and located in the North?”

Location Growth Absolute Frequency

North growing 29

North growing strongly 13

North shrinking 7

South growing 13

South growing strongly 19

South shrinking 2
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Data Science
Bivariate characteristics

growing growing strongly shrinking
Growth

0

5
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30
Location

North
South

No
rth

So
ut

h

Location

0
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50 Growth
growing
growing strongly
shrinking

Task: Can we see a correlation between growth and location?
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Data Science
Bivariate characteristics

We define

the absolute combined frequency of value (ai,bj) as

hij = h(ai,bj) =

n∑
o=1

(xo = ai ∧ yo = bj)

the marginal absolute frequency of value ai as hi• = h(ai, •) =
n∑

o=1
(xo = ai)

the marginal absolute frequency of value bj as h•j = h(•,bj) =
n∑

o=1
(yo = bj)
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Data Science
Bivariate characteristics

Similarly, we define

the relative combined frequency of value (ai,bj) as fij = f (ai,bj) =
h(ai,bj)

n

the marginal relative frequency of value ai as fi• = f (ai, •) = h(ai,•)
n

the marginal relative frequency of value bj as f•j = f (•,bj) =
h(•,bj)

n

Note that the marginal frequency equals to the frequency of the variable itself.
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Data Science
Bivariate characteristics

Location Growth hij fij

North growing 29 0.35

North growing strongly 13 0.16

North shrinking 7 0.08

South growing 13 0.16

South growing strongly 19 0.23

South shrinking 2 0.02

Location hi• fi•

North 49 0.59

South 43 0.41

Growth h•j f•j

growing 42 0.51

growing strongly 32 0.39

shrinking 9 0.11
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Data Science
Bivariate characteristics Contingency table

The two-dimensional frequency distribution of nominal variables is often represented

by a contingency table. A lX − lY -contingency table consists of lX -rows, for each value

of the first variable one, and lY -columns, for each value of the second variable.

X

Y
b1 b2 . . . blY

a1 h11 h12 . . . h1lY

a2 h21 h22 . . . h2lY
...

...
...

. . .
...

alX hlX1 hlX2 . . . hlX lY

lX − lY -contingency table with absolute

frequencies

X

Y
b1 b2 . . . blY

a1 f11 f12 . . . f1lY
a2 f21 f22 . . . f2lY
...

...
...

. . .
...

alX flX1 flX2 . . . flX lY

lX − lY -contingency table with relative

frequencies
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Data Science
Bivariate characteristics Contingency table

The 2− 2 contingency table is also called fourfold table.

X

Y
b1 b2

a1 h11 h12

a2 h21 h22

lX − lY -contingency table with absolute

frequencies

X

Y
b1 b2

a1 f11 f12

a2 f21 f22

lX − lY -contingency table with relative

frequencies
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Data Science
Bivariate characteristics Contingency table

Growth

Location
North South

∑
shrinking 7 2 9

growing 29 13 42

growing strongly 13 19 32∑
49 34 83

Growth

Location
North South

∑
shrinking 0.08 0.02 0.11

growing 0.35 0.16 0.51

growing strongly 0.16 0.23 0.39∑
0.59 0.41 1

33 / 70



Data Science
Bivariate characteristics Contingency table

Growth

Location
North South

∑
shrinking 0.08 0.02 0.11

growing 0.35 0.16 0.51

growing strongly 0.16 0.23 0.39∑
0.59 0.41 1

35% of the cities are in the North and growing

23% of the cities are in the South and strongly growing

Relative combined frequencies do not provide direct indication of the relationship be-

tween values / characteristics.
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Data Science
Bivariate characteristics Contingency table

What is the frequency of shrinking, growing and growing strongly under the condition

that we consider a city in the North or South?

North

Growth absolute relative

shrinking 7 0.14

growing 29 0.59

growing strongly 13 0.27

South

Growth absolute relative

shrinking 2 0.06

growing 14 0.41

growing strongly 19 0.56
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Data Science
Bivariate characteristics Contingency table

Let f•j > 0. Then we define the conditional frequency of X = xi under the

condition Y = yj as

fX=xi|Y=yj =
fij

f•j
for i ∈ {1, . . . , lX}

Let fi• > 0. Then we define the conditional frequency of Y = yj under the

condition X = xi as

fY=yj|X=xi =
fij

fi•
for j ∈ {1, . . . , lY}

Note the notation: AA|BB denotes AA holds under the condition that BB holds - in

short: AA holds given BB.

FY=y1|X=Xi , . . . , fY=ylY |X=xi is called conditional frequency distribution of Y under

the condition X = xi
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Data Science
Bivariate characteristics Contingency table

What is the conditional frequency of growth given location?

growth

location
growing growing strongly shrinking

∑
North 0.59 0.29 0.12 1

South 0.38 0.56 0.06 1

Task: What associations can we observe?
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Data Science
Bivariate characteristics Contingency table

No
rd

Sü
d

0.0

0.1

0.2

0.3

0.4

0.5

0.6 growth
growing
growing strongly
shrinking

No
rd

Sü
d

0.0

0.2

0.4

0.6

0.8

1.0

growth
growing
growing strongly
shrinking

A large city in the South is more likely to grow strongly than a large city in the North

A large city in the North is more likely to shrink than a large city in the south

...

Conditional frequency gives us a first insight on correlations - how would they look like

if there is no correlation?
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Data Science
Bivariate characteristics Contingency table

The conditional frequency distributions of X |Y = yj1 and X |Y = yj2 for

j1 ∈ {1, . . . , lY} and j2 ∈ {1, . . . , lY} equal, if for the relative conditional
frequencies holds:

fX|Y=yj1
= fX|Y=yj2

for all i = 1, . . . , lX .

The variable X is empirically independent of variable Y if all conditional frequency dis-

tributions of X |Y = yj for all j = 1, . . . , lY are equal.

X is empirically independent of Y ⇔ Y is empirically independent of X

X is empirically independent of Y ⇔ hij =
hi•h•j

n
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Data Science
Bivariate characteristics Contingency table

How to describe the relation between two variables? What are the requirements on

such ameasure of association?

For independent variables the measure should be zero

For ”fully dependent” variables the measure should be one

The term ”fully dependent” is difficult to be defined. Generally, it shouldmean that the

distribution of variable Y can be completely derived by only knowing the distribution

of variable X . Note that this is only possible for a quadratic table.
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Data Science
Bivariate characteristics Contingency table

Idea to construct a measore of association

Compare the given contingency table with one, which fulfills the empirical indepen-

dence given the same marginal distribution.

The χ2-coefficient is given by

χ2 =

lX∑
i=1

lY∑
j=1

(
hij − h̃ij

)2

h̃ij
with h̃ij =

hi•h•j

n
and χ2 ∈ [0,∞)

χ2 is zero if the two variables are empirically independent.

A large χ2 indicates a correlation between the two variables - but what is large?
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Data Science
Bivariate characteristics Contingency table

Growth

Location
North South

∑
shrinking 7 2 9

growing 29 13 42

growing strongly 13 19 32∑
49 34 83

χ2 =
(7− 5.31)2

5.31
+ · · ·+ (19− 13.11)2

13.11

= 7.53

Is there a correlation between growth and location? At least we can say, that the two

variables are not completely independent?
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Data Science
Bivariate characteristics Contingency table

Measures of association

The Pearson contingency coefficient KP is given by

Kp =

√
χ2

χ2 + n
with KP ∈

[
0,

√
min(lX − 1, lY − 1)

min(lX , lY )

]

The corrected Pearson contingency coefficient K∗
P is given by

K
∗
P =

KP

max KP
=

√
χ2

χ2 + n
·

√
min(lX , lY )

min(lX − 1, lY − 1)
with K

∗
P ∈ [0, 1]
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Data Science
Bivariate characteristics Contingency table

Growth

Location
North South

∑
shrinking 7 2 9

growing 29 13 42

growing strongly 13 19 32∑
49 34 83

χ2 =
(7− 5.31)2

5.31
+ · · ·+ (19− 13.11)2

13.11

= 7.53

K
∗
P =

√
χ2

χ2 + n
·

√
min(lX , lY )

min(lX − 1, lY − 1)

=

√
7.53

7.53 + 83
·
√
2

= 0.41

There seems to be a weak or medium association between location and growth.
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Data Science
Bivariate characteristics Contingency table

The value 0 ≤ K∗
P ≤ 1 can be interpreted in different ways. In the following one ”gen-

eral” interpretation of the value is given.

value interpretation

K∗
P = 0 empirically independent

K∗
P ∈ (0, 0.3] weak correlation

K∗
P ∈ (0.3, 0.7] medium correlation

K∗
P ∈ (0.7, 1] strong correlation
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Data Science

Bivariate characteristics

Correlation Coefficient
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Data Science
Bivariate characteristics

Given two metric variables X and Y - is there a measure for (linear) correlation?

Linear correlation?

Does there hold yi = αxi + β, with α, β ∈ R and α 6= 0? - in statistics this equation

will not hold for one choice of α, β. Thus, we need a measure to identify how strong the

correlation is!

Of interest?

Form of the correlation (e.g. linear, quadratic, …)

Direction of the correlation (positive, negative)

strength of the correlation (strong, medium, weak)
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Data Science
Bivariate characteristics

In a scatter plot, every variable of (X , Y) is associated with one axis of Cartesian co-

ordinates. Every observation (xi, yi) for i = 1, . . . , n is marked, e.g. with a cross or a

point.

X

Y

(xi, yi)  
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Data Science
Bivariate characteristics

Task: Is there a correlation or not?
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Data Science
Bivariate characteristics

Name Population Area

Frankfurt a. M. 773068 248.31

Stuttgart 632865 207.33
...

...
...

Dortmund 595471 280.71
...

...
...

100000 200000 300000 400000 500000 600000 700000 800000
population

50

100

150

200

250

300

ar
ea

 (k
m

2 )

Task: Is there are correlation between population and area? Of which type is this

correlation?
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Data Science
Bivariate characteristics

Compare values with the arithmetic mean - separate the scatter plot into 4 quadrants.

100000 200000 300000 400000 500000 600000 700000 800000
population

50

100

150

200

250

300

ar
ea

 (k
m

2 )

 (x, y)

2. Quadrant 1. Quadrant

3. Quadrant 4. Quadrant

1. Quadrant xi > x̄ yi > ȳ

2. Quadrant xi < x̄ yi > ȳ

3. Quadrant xi < x̄ yi < ȳ

4. Quadrant xi > x̄ yi < ȳ
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Data Science
Bivariate characteristics

Values in the first and third quadrant indicate positive correlation.

”large” x-values↔ ”large” y-values

”small” x-values↔ ”small” y-values

Values in the second and fourth quadrant indicate negative correlation.

”large” x-values↔ ”small” y-values

”small” x-values↔ ”large” y-values
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Data Science
Bivariate characteristics

The empirical covariance of two variables X and Y is defined by

s̃XY =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ),

where x̄ and ȳ are the corresponding arithmetic means.

The empirical variance of a variable X is a special case of the empirical covariance,

i.e. s̃X = s̃XX
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Data Science
Bivariate characteristics

The term (xi − x̄)(yi − ȳ) indicates in which quadrants the values (xi, yi) lie:

(xi − x̄)(yi − ȳ) > 0: The values lie in the first or third quadrant

(xi − x̄)(yi − ȳ) < 0: The values lie in the second or fourth quadrant

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(x, y)

(xi x)(yi y) = 0.01
(xi x)(yi y) = 0.02
(xi x)(yi y) = 0.04
(xi x)(yi y) = 0.08
(xi x)(yi y) = 0.16

The absolute value of the term (xi − x̄)(yi − ȳ)

indicates how ”deep” the value lie in the

corresponding quadrant.

The sum then indicates in which quadrants the

values are most likely
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Data Science
Bivariate characteristics

name population area yi − ȳ xi − x̄ (xi − x̄)(yi − ȳ)

Frankfurt am Main 775790 248.31 99.02 533604.73 52840107.48

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Dortmund 595471 280.71 131.42 353285.73 46430510.53

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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2. Quadrant 1. Quadrant

3. Quadrant 4. Quadrant

s̃XY =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) = 594781797.95

Positive direction, but is 594781797.95 a

strong, weak or medium correlation?
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Data Science
Bivariate characteristics

The Pearson correlation coefficient rXY , also empirical correlation, for two variables X

and Y is given by

rXY =
s̃XY

s̃X s̃Y
=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

where s̃X and s̃Y are the empirical standard deviations of the variable X and Y .

Correlation coefficient is a dimensionless number

Correlation coefficient only measures a linear correlation between the two

variables
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Data Science
Bivariate characteristics

The value −1 ≤ rXY ≤ 1 gives a glimpse on a possible linear correlation of two vari-

ables.

value description

rXY = 1 All values are lying exactly on one row with positive gradient

rXY = −1 All values are lying exactly on one row with negative gradient

rXY = 0 X and Y are not linear correlated

rXY > 0 X and Y are positive linear correlated

rXY < 0 X and Y are negative linear correlated
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Data Science
Bivariate characteristics

The value rXY can be interpreted in different ways. In the following one ”possible” in-

terpretation of the value is given.

value interpretation

rXY = 0 empirically independent

rXY ∈ (−0.3, 0) ∪ (0, 0.3) weak correlation

rXY ∈ (−0.5, 0.3] ∪ [0.3, 0.5) medium correlation

rXY ∈ [−1,−0.5] ∪ [0.5, 1] strong correlation
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Data Science
Bivariate characteristics

Let’s take a look
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Data Science
Bivariate characteristics

100000 200000 300000 400000 500000 600000 700000 800000
population
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2. Quadrant 1. Quadrant

3. Quadrant 4. Quadrant

The resulting correlation coefficient: rXY = 0.70, thus we observe a strong correlation.
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Data Science
Bivariate characteristics
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The Anscombe’s quartet describe

four datasets, where all have

(nearly) the same descriptive

statistics, but are completely

different.

Take also the scatter plot into ac-

count to verify a possible correla-

tion in the data!
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Data Science

Bivariate characteristics

Ordinal data
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Data Science
Bivariate characteristics

What about two ordinal variables?

Ordinal variables are ”between” nominal and metric!

Ordinal variables can always be seen as nominal variables by ignoring the order. Thus,

computingmeasures of association is possible and useful.

For example if the variables have few values which have a large frequency

The variable Growth in our example is ordinal since there is a natural order:

shrinking < growing < growingstrongly
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Data Science
Bivariate characteristics

Alternative: Mapping ordinal variables to metric variables to compute a correlation

coefficient.

The rank correlation can be computed to measure an association between two ordinal

variables. This is done by ”ranking” the values, corresponding to their order. Then a

correlation coefficient for a metric variable can be used.

Consider the correlation coefficient rXY and replace the observations xi and yi with

the corresponding ranks R(xi) and R(yi), for i = 1, . . . , n.

For example for test-scores and marks
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Summary & Outlook
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Summary & Outlook: Summary

You can compute different statistical deviations

You can analyze bivariate characteristics concerning their correlation

You are able to compute different correlation coefficients and understand their

meaning
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Summary & Outlook: Outlook

Start: Probability theory
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Summary & Outlook: Endnotes

[1]https://de.wikipedia.org/wiki/Liste_der_größten_deutschen_Städte

69 / 70

https://de.wikipedia.org/wiki/Liste_der_größten_deutschen_Städte


Data Science
Summary & Outlook: Acknowledgement

Parts of the lecture base on the lecture ”Statistics” (FH Dortmund)

by

Prof. Dr. Sonja Kuhnt and Prof. Dr. Nadja Bauer.
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