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Data Science
Recap

How can we formalize such a correlation?

Describing correlation of two variables with a dimension number (correlation coeffi-

cient). There are different ways to compute a correlation coefficient depending on the

type of variables.

Nominal characteristics: Measures of association

Ordinal characteristics: Rank correlation coefficients

Metric characteristics: Correlation coefficients
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Data Science
Recap Contingency table

The two-dimensional frequency distribution of nominal variables is often represented

by a contingency table. A lX − lY -contingency table consists of lX -rows, for each value

of the first variable one, and lY -columns, for each value of the second variable.

X

Y
b1 b2 . . . blY

a1 h11 h12 . . . h1lY

a2 h21 h22 . . . h2lY
...

...
...

. . .
...

alX hlX1 hlX2 . . . hlX lY

lX − lY -contingency table with absolute

frequencies

X

Y
b1 b2 . . . blY

a1 f11 f12 . . . f1lY
a2 f21 f22 . . . f2lY
...

...
...

. . .
...

alX flX1 flX2 . . . flX lY

lX − lY -contingency table with relative

frequencies
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Data Science
Recap Contingency table

Let f•j > 0, then we define the conditional frequency of X = ai under the

condition Y = bj as

fX=ai|Y=bj
=

fij

f•j
for i ∈ {1, . . . , lX}

Let fi• > 0, then we define the conditional frequency of Y = bj under the

condition X = ai as

fY=bj|X=ai =
fij

fi•
for j ∈ {1, . . . , lY}

Note the notation: AA|BB denotes AA holds under the condition that BB holds - in
short: AA holds given BB.

fY=b1|X=ai , . . . , fY=blY
|X=ai is called conditional frequency distribution of Y under

the condition X = ai
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Data Science
Recap Contingency table

The conditional frequency distributions of X |Y = bj1 and X |Y = bj2 for

j1 ∈ {1, . . . , lY} and j2 ∈ {1, . . . , lY} equal, if for the relative conditional
frequencies holds:

fX|Y=bj1
= fX|Y=bj2

for all i = 1, . . . , lX .

The variable X is empirically independent of variable Y if all conditional frequency dis-

tributions of X |Y = bj for all j = 1, . . . , lY are equal.

X is empirically independent of Y ⇔ Y is empirically independent of X

X is empirically independent of Y ⇔ hij =
hi•h•j

n
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Data Science
Recap Contingency table

Measures of association

The Pearson contingency coefficient KP is given by

Kp =

√
χ2

χ2 + n
with KP ∈

[
0,

√
min(lX − 1, lY − 1)

min(lX , lY )

]

The corrected Pearson contingency coefficient K∗
P is given by

K
∗
P =

KP

max KP
=

√
χ2

χ2 + n
·

√
min(lX , lY )

min(lX − 1, lY − 1)
with K

∗
P ∈ [0, 1]
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Data Science
Recap

In a scatter plot, every variable of (X , Y) is associated with one axis of Cartesian co-

ordinates. Every observation (xi, yi) for i = 1, . . . , n is marked, e.g. with a cross or a

point.

X

Y

(xi, yi)  
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Data Science
Recap

The Pearson correlation coefficient rXY , also empirical correlation, for two variables X

and Y is given by

rXY =
s̃XY

s̃X s̃Y
=

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

where s̃X and s̃Y are the empirical standard deviations of the variable X and Y .

Correlation coefficient is a dimensionless number

Correlation coefficient only measures a linear correlation between the two

variables
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Data Science
Recap
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The Anscombe’s quartet describe

four datasets, where all have

(nearly) the same descriptive

statistics, but are completely

different.

Take also the scatter plot into ac-

count to verify a possible correla-

tion in the data!
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Data Science
Today

Basics of probability theory
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Data Science
Today:

Up to now: Describing data - how does the data look like, are there correlations?

Data often shows variation, i.e. they scatter around values - this leads to an

uncertainty

Often: random processes are involved!

Probability theory helps us to understand how data was generated and where it stems

from! By this, it helps us to understand what will be the most likely result given a

setting.

Machine learning Learn from data to predict the most likely result for unknown data!
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Data Science

Probability and Combinatorics
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Data Science

Probability and Combinatorics

Probability
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Data Science
Probability:

In 1654 Chevalier de Méré set a task to Blaise Pascal

Is it true, that in the following to plays the first one will lead more often to a victory?

A die is thrown four times: The bet is that at lease one 6 will occur!

Two dice are thrown 24 times: The bet is that at least one pair of 6s will occur!

First modern, mathematically oriented study of probability

We will try to answer this question in the end of the lecture!
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Data Science
Probability: Random experiment

A random experiment, is an experiment for which

conditions are well-defined

multiple different outcomes are possible

it is not predictable which outcome will occur

Example A: Simple dice flip

A dice with six sides is thrown. The result can not be predicted in before.

Example A: Color of a passing car

The color of the next passing car is predicted. The result can not be predicted in before.
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Data Science
Probability: Event

We define the following:

An result ω is an elementary outcome of a random experiment.

The sample space Ω is the collection of all possible outcomes (result).

Ω = {ω|ω is possible outcome of the random experiment}

An event A is a subset of the samples space: A ⊂ Ω

An event A occurs, if the result ω of the random experiment is element of A: ω ∈ A

The empty set ∅ is called impossible event andΩ sure event

Example A: Simple dice flip

Ω = {1, 2, 3, 4, 5, 6}

A = {2, 4, 6}, B = {6}

Example A: Color of a passing car

Ω = {white, red,black, . . . }

A = {black, red, gold}, B = {darkblue}
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Data Science
Probability: Event

In the following!

Basic properties of probabilities are defined: Axioms derived by Kolmogoroff in 1933

- up to now: no better way!

This is typically for math: The natural numbers are defined with the help of the

Peano-axioms (e.g. every natural number has exactly one successor)
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Data Science
Probability: Theory of quantities

LetΩ be a sample space and A,B ⊂ Ω two events, P(Ω) the power set ofΩ.

P(Ω) denotes the power set ofΩ, i.e. the set of all possible subsets ofΩ:

P(Ω) = {A|A ⊂ Ω}

A ∩ B intersection A and B occur

A ∪ B union A or B or both occur

A \ B difference A occur but not B

A∆B symmetric difference A or B occur, but not both

A = Ω \ A complement the opposite of A occurs

If A ∩ B = ∅, then we call these events disjoint, i.e. If A occurs, then B can not occur

and vice versa.
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Data Science
Probability: Laplace experiment

A random experiment is called Laplace experiment, if all possible results of the exper-

iment have the same chance to occur.

Example A

The dice flip experiment is a Laplace experiment if the dice is fair.

Example A

The passing car experiment is not a Laplace experiment, since every color appears dif-

ferently often.
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Data Science
Probability: Kolmogoroff axioms

A probability measure is a function P : P(Ω) → R with the following properties:

P(A) ≥ 0 for all A ⊂ Ω

P(Ω) = 1

For piece-wise disjoint events A1,A2, . . . there holds

P(A1 ∪ A2 ∪ · · · ∪ Ak) =
k∑

i=1

P(Ai) finite many and

P(A1 ∪ A2 ∪ . . . ) =
∞∑
i=1

P(Ai) for countable infinite many.

Some properties of probability measures

P(Ā) = 1− P(A) for all A ∈ P(Ω)

P(∅) = 0

If A ⊂ B then P(A) ≤ P(B)

P(A) ≤ 1 for all A ∈ P(Ω)
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Data Science
Probability: Event

Let A,B ⊂ Ω two events of sample space Ω.

A B

If A ∩ B = ∅, then A and B are disjoint:

P(A ∩ B) = 0

22 / 52



Data Science
Probability: Event

P(A) = P(Ω)− P(A)

= 1− P(A)

P(A ∪ B) =P(A) + P(B)

− P(A ∩ B)

P(A ∩ B)
P(A \ B) =P(A)

− P(A ∩ B)
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Data Science
Probability: Event

In the case of a Laplace random experiment, every result has the same chance to oc-

cur, with |Ω| < ∞ then the Laplace probability measure can often be computed by

counting:

P(A) =
|A|
|Ω| =

# number of favorable cases

# number of possible cases

Counting sounds easy, unfortunately this is not always the case - In more complicate

cases: Combinatorics!
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Data Science
Probability: Event

Example

Trowing a coin ( Head (H) and Tail (T)) twice, then there are four possible results (we take

the order into account)

Ω = {HH,HT , TH, TT}
then

P(Ω) = {∅, {HH}, . . . , {TT}, {HH,HT}, . . . , {HT , THTT},Ω}.

All results have the same probability, i.e.

P(HH) = P(HT ) = P(TH) = P(TT ) =
1

4

P(A) can be computed for all A ∈ P(Ω), e.g: E=”at least one tail”:

P(E) =
|{HT , TH, TT}|

|Ω| =
3

4
= P(HT ) + P(TH) + P(TT )
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Data Science

Probability and Combinatorics

Combinatorics
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Data Science
Combinatorics: Random experiment

P(A) =
|A|
|Ω| =

# number of favorable cases

# number of possible cases

For simple cases easy: Throwing a dice has 6 possible results and 3 of them are

even - probability that the result is even: 3
6

But can get more complex: To color three elements, one can choose from 10 colors

- what is the probability that at least one element is red?
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Data Science
Combinatorics: Recap: Math

The factorial value of a natural number n ∈ N is given by

n! =
n∏

i=1

i = n · (n− 1) · (n− 1) · · · · · 2 · 1.

The factorial value of 0 is 1: 0! = 1

The binomial coefficient ”n over k”, for n, k ∈ N0, is given by(
n

k

)
=

 n!
k!·(n−k)! n ≥ k

0 n < k
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Data Science
Combinatorics: Permutation

Consider a tuple of n ∈ N objects, i.e. (x1, . . . , xn), with k different values. Then, an

order of this set is called permutation, e.g. (x3, x1, . . . , x4).

How many permutations are possible?

1 k = n, i.e. no values occurs more than once:

The number of all possible permutations in the case n = k is

n!.

2 k < n, i.e. the k-values occur with frequency n1, . . . , nk:

The number of all possible permutations in the case n < k is

n!

n1! · · · · · nk!
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Data Science
Combinatorics: Random experiment

Example: Lego

There are 3 red and 2 blue Lego stones - how many different colored towers could be

build?

n = 5, n1 = 3, n2 = 2 ⇒ n!

n1!n2!
=

20

2
= 10

Example

There is a box with 20 different Lego stones, how many different choices are possible,

when choosing three of them randomly?

n = 20, k = 3 ⇒

(
20

3

)
= 1140
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Data Science
Combinatorics: Random experiment

Number of possible samples with k observations out of n objects is given by the

following table

Repeats allowed No Repeats (k ≤ n)

Combinations (order doesn’t matter)

(
n+ k − 1

k

) (
n

k

)
Permutations (order matters) nk n!

(n−k)!
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Data Science
Combinatorics: Random experiment

Example: Side dishes in a restaurant

How many combinations choosing 2 of 10 side dishes are possible if

both are of the same size and you are allowed to take one twice?

(
10 + 2− 1

2

)
= 55

both are of the same size, but they should be different?

(
10

2

)
= 45

the first is larger than the second, but you are allowed to take one twice?

102 = 100

the first is larger than the second and they should be different?

10!
(10−2)! = 90
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Data Science
Combinatorics: Random experiment
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Data Science
Combinatorics: Random experiment

For an operation given as a sequence of r-steps, with:

the Number of possible chances to finish the first step is given by n1

For every possible result of the first step, the number of possible chances to

finish the second step is given by n2

…

then the number of all possible sequences to finish the operation is given by

n1 · n2 · · · · nr
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Data Science
Combinatorics: Random experiment

Example

How many passwords are possible if

it has a length of 6

the first two digits are one of the following letters: A, B, C, D, E, F, G

the last four digits are numbers, where no number occurs twice

Examples: AG1243, GG5230

AA: Choosing k = 2 out of n = 7 with order and repetition: nk = 72 = 49

1234: Choosing k = 4 out of n = 10 with order and no repetition:
n!

(n−k)! =
10!
8! = 5040

With the multiplication rule: 49 · 5040 = 246960 possible passwords.
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Data Science
Combinatorics: Random experiment
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Data Science

Conditional probability
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Data Science

Conditional probability

Stochastically independency

36 / 52



Data Science
Stochastically independency

How does the probability of the event A change, if we know, that event B occurred.

Example

A = ”Road is wet”, B = ”It has rained an hour ago”

A ∩ B = ”Road is wet and it has rained an hour ago”

A|B = ”Road is wet given that it has rained an hour ago”

The conditional probability of A under the condition of B (or P of A given B) is defined

by

P(A|B) = P(A ∩ B)

P(B)
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Data Science
Stochastically independency

Example: Trowing two dices

What is the probability that the first dice shows an odd number given that the sum of

both dices is 5?

Ω = {(1, 1), (1, 2), . . . , (6, 6)}, |Ω| = 36

A : ”the first dice shows an odd number” = {(1, 1), (1, 2), . . . , (5, 6)}⇒ P(A) = 18
36

B : ”the sum ob both dices is 5” = {(1, 4), (2, 3), (3, 2), (4, 1)}⇒ P(B) = 4
36

A ∩ B = {(1, 4), (3, 2)}⇒ P(A ∩ B) = 2
36

P(A|B) = P(A ∩ B)

P(B)
=

2

4
= 0.5
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Data Science
Stochastically independency

Events A and B are called (stochastic) independent if and only if

P(A ∩ B) = P(A) · P(B)

Otherwise A and B are called (stochastic) dependent.

The following is equivalent (⇔) to A and B are stochastically independent

⇔ P(B|A) = P(B)

⇔ P(A|B) = P(A)

⇔ A and B are stochastically independent

⇔ A and B are stochastically independent

⇔ A and B are stochastically independent
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Data Science
Stochastically independency

Example: Thworing two dices

A : ”the first dice shows an oddnumber” andB : ”the sumob both dices is 5” is stochas-

tically independent

⇔

A : ”the first dice shows an even number” and B : ”the sum ob both dices is not 5” is

stochastically independent

40 / 52



Data Science
Stochastically independency

Events A1, . . . ,Ak are called piece-wise independent if Ai and Aj are independent

for all i 6= j.

Events A1, . . . ,Ak aremutual independent if for every subset Ai1 , . . . ,Aij for j ≤ k

there holds

P(Aj1 ∩ · · · ∩ Aij) = P(Ai1) · · · · · P(Aij).
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Data Science
Stochastically independency

In 1654 Chevalier de Méré set a task to Blaise Pascal

Is it true, that in the following to plays the first one will lead more often to a victory?

A die is thrown four times: The bet is that at lease one 6 will occur!

Two dice are thrown 24 times: The bet is that at least one pair of 6s will occur!

P(at least one 6 in 4 throws) = 1-P(no 6 in 4 throws)

= 1-P(no 6 in throw 1)P(no 6 in throw 2)P(no 6 in throw 3)P(no 6 in throw 4)

= 1−
(
5
6

)4
= 0.518

P(at least one pair of 6s in 24 throws) = 1−
(
35
36

)2
4 = 0.491
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Data Science
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Data Science

Conditional probability

Bayes’ theorem
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Data Science
Bayes’ theorem

In the following: We assume that there are B1, . . . ,Bk events which fulfill the following

conditions:

Bi ∩ Bj = ∅ for i 6= j, i.e. the events are piece-wise disjoint

k⋂
i=1

Bi = Ω, i.e. the events cover the complete sample space

B1 B2 Bk 1 Bk

A

A B1 A B2 A Bk 1 A Bk
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Data Science
Bayes’ theorem

Diagnostic test in medicine

How large is the probability that in the case of a positive HIV test, the patient is actually

infected?

healthy infected

positive negative positive negative

HIV?

Test?

positive negative

in
fe

ct
ed

healthy

45 / 52



Data Science
Bayes’ theorem

Law of total probability

Under the given conditions, there holds for every A ⊂ Ω:

P(A) =

k∑
i=1

P(Bi ∩ A) =

k∑
i=1

P(Bi)P(A|Bi)

Bayes’ Theorem

Under the given conditions, there holds for every A ⊂ Ω

P(Bj|A) =
P(Bj)P(A|Bj)
k∑

i=1

P(Bi)P(A|Bi)
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Data Science
Bayes’ theorem

positive negative

in
fe

ct
ed

healthy

Ω = ”group of persons”

A = ”positive result of a test”

B = ”person is infected”

Let assume for a specific test method:

P(A|B) = 0.9P(A|B) = 0.9P(A|B) = 0.9: For infected persons, the

test is in 90 % of the cases positive

P(A|B) = 0.98P(A|B) = 0.98P(A|B) = 0.98: For healthy persons, the

test is in 98 % of the cases negative

P(B) = 0.01 ⇒ P(B) = 0.99P(B) = 0.01 ⇒ P(B) = 0.99P(B) = 0.01 ⇒ P(B) = 0.99: The

proportion of infected persons is 1 %.

Task: What is P(B|A) = ”person is infected given a positive test”?

P(B|A) = P(A|B)P(B)
P(A|B)P(B) + P(A|B)P((B))

=
0.9 · 0.01

0.9 · 0.01 + 0.02 · 0.99 = 0.31
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Data Science
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Summary & Outlook
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Data Science
Summary & Outlook: Summary

You understand the basics of probability theory and are able to apply it

You know basic ways to compute the number of possibilities and are able to select

them depending on the setting

You know Bayes’ theorem and are able to apply it
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Data Science
Summary & Outlook: Outlook

Random variables
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Data Science
Summary & Outlook: Acknowledgement
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