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Data Science
Recap: Random experiment

A random experiment, is an experiment for which

conditions are well-defined

multiple different outcomes are possible

it is not predictable which outcome will occur

Example A: Simple dice flip

A dice with six sides is thrown. The result can not be predicted in before.

Example A: Color of a passing car

The color of the next passing car is predicted. The result can not be predicted in before.
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Data Science
Recap: Kolmogoroff axioms

A probability measure is a function P : P(Ω) → R with the following properties:

P(A) ≥ 0 for all A ⊂ Ω

P(Ω) = 1

For piece-wise disjoint events A1,A2, . . . there holds

P(A1 ∪ A2 ∪ · · · ∪ Ak) =
k∑

i=1

P(Ai) finite many and

P(A1 ∪ A2 ∪ . . . ) =
∞∑
i=1

P(Ai) for countable infinite many.

Some properties of probability measures

P(Ā) = 1− P(A) for all A ∈ P(Ω)

P(∅) = 0

If A ⊂ B then P(A) ≤ P(B)

P(A) ≤ 1 for all A ∈ P(Ω)
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Data Science
Recap: Random experiment

P(A) =
|A|
|Ω| =

# number of favorable cases

# number of possible cases

For simple cases easy: Throwing a dice has 6 possible results and 3 of them are

even - probability that the result is even: 3
6

But can get more complex: To color three elements, one can choose from 10 colors

- what is the probability that at least one element is red?
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Data Science
Recap: Random experiment

Number of possible samples with k observations out of n objects is given by the

following table

Repeats allowed No Repeats (k ≤ n)

Combinations (order doesn’t matter)

(
n+ k − 1

k

) (
n

k

)
Permutations (order matters) nk n!

(n−k)!
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Data Science
Recap

Events A and B are called (stochastic) independent if and only if

P(A ∩ B) = P(A) · P(B)

Otherwise A and B are called (stochastic) dependent.

The following is equivalent (⇔) to A and B are stochastically independent

⇔ P(B|A) = P(B)

⇔ P(A|B) = P(A)

⇔ A and B are stochastically independent

⇔ A and B are stochastically independent

⇔ A and B are stochastically independent
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Data Science
Recap

In the following: We assume that there are B1, . . . ,Bk events which fulfill the following

conditions:

Bi ∩ Bj = ∅ for i 6= j, i.e. the events are piece-wise disjoint

k⋂
i=1

Bi = Ω, i.e. the events cover the complete sample space

B1 B2 Bk 1 Bk

A

A B1 A B2 A Bk 1 A Bk
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Data Science
Recap

Law of total probability

Under the given conditions, there holds for every A ⊂ Ω:

P(A) =

k∑
i=1

P(Bi ∩ A) =

k∑
i=1

P(Bi)P(A|Bi)

Bayes’ Theorem

Under the given conditions, there holds for every A ⊂ Ω

P(Bj|A) =
P(Bj)P(A|Bj)
k∑

i=1

P(Bi)P(A|Bi)
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Data Science
Today

Random variables and distribution functions
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1 Random Variables

Discrete distributions

Continuous distributions

Overview

2 Summary & Outlook

3 References
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Random Variables
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Data Science
Random Variables

Often: Results of random process can be mapped to numbers

A random variable provides an assignment of results to numbers

Discrete random variable: Countable many possible values

Continuous random variable: Any value in an interval possible
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Data Science
Random Variables

Throwing a dice:

Is the thrown value larger than 2? X : {1, 2, 3, 4, 5, 6} → {0, 1}, X(ω) =

0 ω ≤ 2

1 ω > 2

Of interest: Probability P(X = 1) respectively P(X = 0).

Overweight of persons:

Height ωH (cm) and weight ωW (kg) of persons: Ω0 = {ω = (ωH, ωW )|ωH > 0, ωW > 0}

X : Ω0 → R+, X(ω) =
Weight(kg)

(Height(m))2
=

ωW

(ωH/100)2

Of interest: Does a person have normal weight? Probability P(18.5 ≤ X ≤ 25)
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Data Science
Random Variables

Given a random process with sample space Ω. A function X , mapping every possible

result ω ∈ Ω to a real number is called random variable:

X : Ω → R, ω 7→ X(ω) = x.

x is also known as the realization of the random variable.
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Data Science
Random Variables

Let X be a real valued random variable, then we call the probability measure P(X ∈
A),A ⊂ R probability distribution of X
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Data Science
Random Variables Discrete random variable

0

1

Sample Space Random Variable Probability

1/3

2/3

Example

X : The value of a thrown dice is

larger than 2:

P(X(ω) = 0) = P(ω ≤ 2) = p =
1

3

P(X(ω) = 1) = P(ω ≥ t)

= 1− P(ω ≤ t) = 1− p

=
2

3

P(X ∈ {0, 1}) = 1

P(X 6∈ {0, 1}) = 0

17 / 69



Data Science

Random Variables

Discrete distributions
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Data Science
Discrete distributions Discrete random variable

A randomvariable X hasadiscrete distributionor the distribution of X is calleddiscrete

distribution if the sample space

{x|X(ω) = x, ω ∈ Ω0}

has countable many elements. The set

Ω = {x|P(X = x) > 0, x ∈ R}

is called support of X .

The support contains all possible realizations of X .
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Data Science
Discrete distributions

The probability density (short: density) of a discrete random variable X is defined by

f (x) =

P(X = x) x ∈ Ω

0 otherwise
.

Properties of the density a discrete random variable X∑
x∈Ω

f (x) = 1

P(x ∈ A) =
∑
x∈A

f (x), A ⊂ Ω
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Data Science
Discrete distributions

Example: 1-2-3 dice

Consider a dice with six sides and three values. The value 1 is on three sides, the value

2 on two sides and the value 3 on one side. X gives the thrown value:

Support: Ω = {1, 2, 3}
Probability density:

P(X = 1) = f (1) = 3
6
= 1

2

P(X = 2) = f (2) = 2
6
= 1

3

P(X = 3) = f (3) = 1
6

or

f (x) =
4− x

6
for x = 1, 2, 3

3 2 1 2

1

1
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Data Science
Discrete distributions

Let X be a discrete random variable, then the function

F : R → R, x 7→ F (x) = P(X ≤ x)

is called (cumulative) distribution function of X .

Properties

F (X) = P(X ≤ x) =
∑

{z|z≤x,z∈Ω}
f (z)

0 ≤ F (X) ≤ 1

F (X)monotone increasing
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Data Science
Discrete distributions
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Example: 1-2-3 dice

X : Number of the dice, Ω = {1, 2, 3}

P(x < 1) = 0

F (1) = P(x ≤ 1) = f (1) = 1
2

F (2) = P(x ≤ 2) = f (1) + f (2) = 5
6

F (3) = P(x ≤ 3) = f (1) + f (2) + f (3) = 1
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Data Science
Discrete distributions

For a discrete random variable X with probability density f (x) and support Ω we call

the sum

E(X) =
∑
x∈Ω

x · f (x)

the expected value of X . The sum

σ2 = Var(X) =
∑
x∈Ω

(x − E(x))2 · f (x),

is called variance. The square root
√
σ2 is called standard deviation of X .

The expected value can be seen as the mean value in the long run (many

repetitions)

The variance is a measure of the spread around the expected value
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Data Science
Discrete distributions

Task: Compute the expected value and variance of the 1-2-3 dice example!

X : Number

of dice, Ω = {1, 2, 3}

E(X) = 1 · 1
2
+ 2 · 2

6
+ 3 · 1

6
=

10

6
=

5

3
= 1.66 . . .

Var(X) =

(
1− 5

3

)2
1

2
+

(
2− 5

3

)2
1

3
+

(
3− 5

3

)2
1

6

=
4

9
· 3
6
+

1

9
· 2
6
+

16

9
· 1
6
=

5

9

σ =
√
Var(X) =

√
5

3
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Data Science
Discrete distributions

Task: Compute the expected value and variance of the 1-2-3 dice example! X : Number

of dice, Ω = {1, 2, 3}
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2
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6
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6
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10

6
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5

3
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+
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Data Science
Discrete distributions

Let’s take a look
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Data Science
Discrete distributions

Let X be a random variable and a,b ∈ R constant values. Then there holds:

Y = aX + b is a random variable with

E(Y) = E(aX + b) = aE(X) + b

Var(Y) = Var(aX + b) = a
2
Var(X)

Var(X) = E((X − E(X))2) = E(X2)− E(X)2
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Data Science
Discrete distributions

Depending on the situation, e.g. the observed random process, there are different

proper distribution functions for a random variable.

LetD be a distribution named dist with probability density f and distribution function

F . If a random variable follows this distribution we call the random variable

dist-distributed or X ∼ D.
In the following: Some example distributions!
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Data Science
Discrete distributions

A Bernoulli-experiment is a random experiment with the following structure:

each experiment only considers whether event A occurs or not (A occurs)

Then P(A) = p and P(A) = 1− p

If a Bernoulli experiment is carried out n times independently of each other, then the

distribution of the number of successes follows a binomial distribution

Examples

Urn model with replacements

n-times throwing a dice: Probability that the 6 is thrown x-times

Number of heals of n treated patients, Number of defect parts in the case of n

produced parts.
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Data Science
Discrete distributions

Bin(n, p)-distribution

A discrete random variable X with support {0, 1, . . . , n} has a binomial distribution

(X ∼ Bin(n, p)) with parameter n and p, if the probability density of X is given by:

f (x) =


(
n
p

)
px(1− p)n−x x ∈ {0, 1, . . . , n}

0 otherwise

For X ∼ Bin(n, p) there holds E(X) = np and Var(X) = np(1− p).
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Data Science
Discrete distributions
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Example: Urn model with 10 balls (4 white, 6 black)

Drawing six balls with repetition: X : number of

white balls.

f (x) = P(X = x) =
(
6
x

)
0.4x0.66−x

X ∼ Bin(6, 0.4)
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Data Science
Discrete distributions

In the case of a singe Bernoulli-experiment the random variable can be given as

X =

1, if A occurs

0, if A occurs

with distribution function

f (x) = P(X = x) =

pX (1− p)1−x x ∈ {0, 1}

0 otherwise

which equals to the distribution Bin(1, p) (X ∼ Bin(1, p)).
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Data Science
Discrete distributions

Reminder: Laplace-experiment

A random experiment is called Laplace experiment, if all possible results of the exper-

iment have the same chance to occur.

Examples

Throwing a dice, coin or equals

Drawing a card from a pile

Spinning the fortune wheel
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Data Science
Discrete distributions

DU(m)-distribution

A discrete random variable X with finite support Ω = {x1, . . . , xm} has a (discrete)

uniform distribution (X ∼ DU(m)), if the probability density function is given by

f (x) =

 1
m
, x ∈ Ω

0 otherwise

For X discrete uniform distributed with supportΩ = {1, . . . ,m} there holds:

E(X) =
m+ 1

2
, E(X2) =

(m+ 1)(2m+ 1)

6
,Var(X) =

m2 − 1

12
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Data Science
Discrete distributions
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Example: Throwing a fair dice

X=”Thrown value”, Ω = {1, . . . , 6}, f (x) = 1
6∀x ∈ Ω.

E(X) =
∑
x∈Ω

x · f (x) = 1

6
· (1 + · · ·+ 6) = 3.5

Var(x) =
∑
x∈Ω

(x − 3.5)2 · f (x) = · · · = 35

12
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Data Science
Discrete distributions

The distributions shown are just two examples. There are other distributions for a wide

variety of requirements!

Further distributions

Poisson distribution: e.g. counting rare events in a defined period

hypergeometrical distribution: e.g. urn model without replacements

Geometric distribution: e.g. number of tries till first success

…
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Data Science

Random Variables

Continuous distributions
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Data Science
Continuous distributions

A random variable X has a continuous distribution, if there exists a function f : R → R
with f (x) ≥ 0 for all x ∈ R such that

P(x ≤ x) = F (X) =

x∫
−∞

f (t)dt

for all x ∈ R holds.

The function f (x) is called (probability) density of X and F (X) is called distribution

function.

Note: {x|X(ω) = x, ω ∈ Ω0} is a range or a union of ranges.
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Data Science
Continuous distributions

F (x) is continuous and monotone increasing with values in [0, 1].

F (−∞) = lim
x→−∞

F (x) = 0 and F (∞) = lim
x→∞

F (x) = 1

P(x ≤ b) = P(X < b) = F (b) =
b∫

−∞
f (t)dt

P(a ≤ X ≤ b) = P(a < X < b) = P(a ≤ X < b) = P(a < X ≤ b)

b
X
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Data Science
Continuous distributions

Properties of densitiy function f of a continuous random variable

Standardization:
∞∫

−∞
f (x)dx = 1

f (x) = dF(x)
dx

= F ′(x) for all x with f continuous in x.

The probability of an event A is given by

P(X ∈ A) =

∫
A

f (x)dx

f (x) 6= P(X = x) and P(X = x) = 0 for all x ∈ R

The supportΩ is given by all values x ∈ R with f (x) > 0, i.e.

Ω = {x|f (x) > 0}
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Data Science
Continuous distributions

Task: For which a is the following function a density function of a random variable?

f (x) =

2x 0 ≤ x ≤ a

0 otherwise

Compute the integral to check for which a it equals to 1:

∞∫
−∞

f (x)dx =

s∫
0

2xdx = [x2]a0 = a
2

For
∞∫

−∞
f (x)dx = 1 and 0 ≤ a there must hold a = 1.
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Data Science
Continuous distributions

Task: For which a is the following function a density function of a random variable?
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Data Science
Continuous distributions

Task: What is the distribution function of X , if the following density function is given:

f (x) =

2x 0 ≤ x ≤ 1

0 otherwise

Distribution function:

F (X) =

x∫
−∞

(t)dt =



x∫
−∞

0dt x < 0

0∫
−∞

0dt +
x∫
0

2tdt = x2 0 ≤ x ≤ 1

0∫
−∞

0dt +
∫ 1

0
2tdt +

x∫
1

0dt = 1 x > 1
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Data Science
Continuous distributions

Task: What is the distribution function of X , if the following density function is given:
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Data Science
Continuous distributions

Expected value and variance

Let X be a continuous random variable with density f , then the expected value of X is

given by

µ = E(X) =

∞∫
−∞

x · f (x)dx

The variance of X is defined by

σ2 = Var(x) = E((X − E(X))2) =

∞∫
−∞

(x − E(X))2f (x)dx

The positive square root σ is denoted standard deviation of X .
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Data Science
Continuous distributions

Similar to the discrete case, the expected value gives the mean value in the long run

and the variance defines the spread around the mean value.
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Density functions of the random variables X1 and X2 with

E(X1) = E(X2) and Var(X1) > Var(X2)
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Data Science
Continuous distributions

Let’s take a look
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Data Science
Continuous distributions

Properties of expected value and variance

For a,b ∈ R being constant and g(x) a real function, there holds

E(aX + b) = aE(X) + b

E(g(X)) =
∞∫

−∞
g(x)f (x)dx

Var(X) = E(X2)− (E(X))2 (Steiner’s theorem)

Var(aX + b) = a2Var(X)
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Data Science
Continuous distributions

Task: Compute the expected value and variance of a continuous random variable with

the following density function:

f (x) =

2x 0 ≤ x < 1

0 otherwise

E(X) =

∞∫
−∞

xf (x)dx =

1∫
0

2x2dx = [
2

3
x
3]10 =

2

3

Var(X) = E(X2)− (E(X))2 =

1∫
0

x
2
f (x)dx − (

2

3
)2 =

1∫
0

2x3dx − 4

9
=

1

18
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Data Science
Continuous distributions
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Data Science
Continuous distributions

The p-quantile of the distribution variable of the random variable X is the value Qp for

which there holds

p =

Qp∫
−∞

f (x)dx = P(x ≤ Qp) = F (Qp).

Q0.25Q0.5Q0.75
X
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The 0.5-quantile of X is called median of X . The

0.25- and 0.75-quantil Q0.25 and Q0.75 is called

upper and lower quartile.
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Data Science
Continuous distributions

Task: Compute the median of the random variable X with the following distribution

function:

F (X) =


1 x > 1

x2 0 ≤ x ≤ 1

0 x < 0

1 Find Q0.5 such that F (Q0.5) = 0.5

2 F (Q0.5) = Q2
0.5

3 Q2
0.5 = 0.5 only if Q0.5 =

√
0.5

Thus, the median of the random variable X equals to
√
0.5.
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Data Science
Continuous distributions
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Data Science
Continuous distributions

Uniform distribution

A continuous random variable X has a (continuous) uniform distribution (rectangular

distribution, X ∼ Unit(a,b)) with parameter a,b ∈ R and a < b, if the probability

density function is given by

f (x) =

 1
b−a

x ∈ [a,b]

0 otherwise

For X ∼ Unif (a,b) there holds:

E(X) =
a+ b

2
and Var(X) =

(b− a)2

12
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Data Science
Continuous distributions
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Distribution function of a uniform distribution:

F (x) =


0 x < a

x−a
b−a

a ≤ x < b

1 x ≥ b

Example

Waiting time for metro without knowledge of the

timetable.
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Data Science
Continuous distributions

Often: One wants to generate values following an arbitrary distribution F . This can be

derived from a uniform distribution.

Let U ∼ Unif (0, 1), F a distribution function and F−1 the corresponding inverse distri-

bution function. Then, the random variable X = F−1(U) has the distribution function

F .

Start with random numbers u1, . . . , un from a Unif (0, 1)-distribution (e.g. by a list

of pseudo random numbers)

Compute x1 = F−1(u1), . . . , xn = F−1(un)
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Data Science
Continuous distributions

Normal distribution is the ”most important” distribution in statistics!

Known with different names: Gaussian distribution, bell-shaped curve, …

Many variables in natural science are normally distributed:

people’s heights, IQ scores, examination grades, sizes of snowflakes, lifetimes of lightbulbs,

weights of loaves of bread, milk production of cows, ...

errors in measurements

Central limit theorem

In short: The sum ofmany random variables with arbitrary distribution is nearly normal

distributed.
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Data Science
Continuous distributions

Definition: Normal distribution

A continuous random variable X has a normal distribution (X ∼ N(µ, σ2)) with param-

eter µ ∈ R and σ2 > 0, if the probability density is given by

f (x) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)
, x ∈ R

For X ∼ N(µ, σ2) there holds E(X) = µ and Var(X) = σ2
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Data Science
Continuous distributions
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curve sketching of f :

f (x) > 0 for all x ∈ R

lim
x→−∞

f (x) = lim
x→∞

f (x) = 0

global maximum in µ

symmetric around µ:

f (µ− x) = f (µ+ x) for all x > 0

Two turning points in w1 = µ− σ and

w2 = µ+ σ
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The normal distribution function F (X) =
x∫

−∞

1√
2µσ

exp
(
− (t−µ)2

2σ2

)
dt can only be ap-

proximated numerically!

For transformations Y = aX + b with X ∼ N(µ, σ2) with constant values a,b ∈ R there

holds Y ∼ N(aµ+ b, a2σ2)

Standarization

A variable X ∼ N(µ, σ2) can be transformed into a standardized normal distributed

variable:

Z =
X − µ

σ
∼ N(0, 1)

with distribution function F (x) = P(X ≤ x) = Φ( x−µ
σ ).
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Definition standard normal distribution

X ∼ N(µ, σ2) with µ = 0 and σ2 = 1 is called standard normal distribution. The

corresponding density function is denoted with ϕ andΦ, i.e.

ϕ =
1√
2π

e
− 1

2
x2
andΦ(x) =

x∫
−∞

ϕ(t)dt

Remark

Φ(−x) = 1− Φ(x)

For X ∼ N(0, 1) there holds E(X) = 0 and Var(X) = 1
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The distribution function of the standard normal distribution Φ(x) and the quantile

Φ(zβ) = P(Z ≤ zβ) = β are given in different books.

Example of a standard normal table given in literature
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Example

Let X be the height of a six years old child. Assumption: X ∼ N(100, 25).

What is the probability that such a child is at most 110 cm large?

P(X ≤ 110) = P

(
X − 100

5
≤ 110− 100

5

)
= Φ(2) = 0.977

Probability that a child is at most 90 cm large?

Probability that a child is between 90 and 110 cm large?

Hint:
x -0.36 0 0.5 0.78 1 2 2.5

Φ(x) 0.359 0.500 0.692 0.782 0.841 0.977 0.994
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The distributions shown are just two or three examples. There are other distributions

for a wide variety of requirements!

Further

Exponential distribution Survival times (e.g. for devices), Waiting times between

two Poission events.

F / t / χ2-distribution: typical distributions of test statistics

logistic distribution: modelling of dosis-effect relationship

…
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Overview: Discrete distribution functions

Name Density Support Expected value Variance

Binomial

Bin(n, p)
(
n
x

)
px(1− p)n−x {0, 1, . . . , n} np np(1− p)

Discrete uniform

DU(m) 1
m

{0, 1, . . . ,m} m+1
2

m2−1
12
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Overview: Continuous distribution functions

Name Density Support Expected value Variance

Normal

N(µ, σ2) 1√
2φσ

exp
(
− (x−µ)2

2σ2

)
R µ σ2

Standard normal

N(0, 1) 1√
2π

e−
1
2
x2 R 0 1

continuous uniform

Unif (a,b) 1
b−a

[a,b] a+b
2

(b−a)2

12
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Data Science
Summary & Outlook: Summary

You know the basics of random variables and their distributions

You are able to compute the expected value and variance of random variables

You know different types of distribution functions

You know the normal distribution and are able to work with it
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Summary & Outlook: Outlook

Statistical tests and linear regression
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Summary & Outlook: List of images

https://commons.wikimedia.org/wiki/File:Table_of_Standard_Normal_Probabilities.png
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Summary & Outlook: Acknowledgement

Parts of the lecture base on the lecture ”Statistics” (FH Dortmund)

by

Prof. Dr. Sonja Kuhnt and Prof. Dr. Nadja Bauer.
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