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Data Science
Recap

Other way around: Only a sample is given - what are β0 and β1?

Which line is the ”best”? We need a predictor for the values β0 and β1!

Simple linear regression is amodel that estimates the linear relationship between one

independent and one dependent variable.
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Data Science
Recap

The linear regression line for Y given X with observations (xi, yi) ∈ R2 for i = 1, . . . , n

is given by

ŷ = β̂0 + β̂1x

with

β̂1 =

n∑
i=1

(yi − y)(xi − x)

n∑
i=1

(x − xi)2
and β̂0 = y − β̂1x

If ε is normally distributed, then are also β0 and β1 normally distributed.
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Data Science
Recap
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Residual plot not fulfilling all conditions formulated before.
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Data Science
Recap

The value

R
2 =

RSS∗

TSS
=

n∑
i=1

(ŷi − y)2

n∑
i=1

(yi − y)2

is called coefficient of determination.

There holds

0 ≤ R2 ≤ 1

R2 = 1− ESS
TSS

R2 = 1 if and only if ei = 0 for all i = 1, . . . , n: optimal fit, i.e. all observations lie

on the regression line.

R2 = 0 if and only if ŷi = y for all i = 1, . . . , n
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Data Science
Today

confidence intervals and statistical tests
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1 Confidence intervals

Point and interval estimators

Confidence intervals for expected values

2 Statistical tests

Statistical tests and z-test

One sample t-test for location

Two sample t-test for location difference

3 Summary & Outlook
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Data Science

Confidence intervals
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Data Science
Confidence intervals

So far: Point estimator for linear regression coefficients!

Can we also estimate different values for observations (e.g. expected value)

How accurate is the estimated value?

Since the estimated values are computed due to observations, we can not expect that

these values are accurate. Especially, due to statistics, the values could be far away

from the exact ones. Can we measure the uncertainty?
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Data Science

Confidence intervals

Point and interval estimators
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Data Science
Point and interval estimators

Estimator: Use a sample to gain information about unknowns aspects of the distribu-

tion.

Some properties of an distribution are similar to observed values

Distribution of X Sample (x1, . . . , xn)

Distribution function F (x) empirical distribution function Fn(x)

density f (x) Histogram

expected value µ arithmetic mean x

Variance σ2 empirical variance s̃2

theoretical quantile xp empirical quantile xp
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Data Science
Point and interval estimators

What is a random sample?

Repeat identical random process n times independently of each other (X1, . . . , Xn)

Consider sample x1, . . . , xn and compute estimation

Two random variables X and Y are independent if for all x ∈ R and y ∈ R there holds:

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y) = FX (x)FY (y)

Random sample of independent identically distributed random variables

X1, . . . , Xn are independent and follow the same distribution.
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Data Science
Point and interval estimators

Situation: The form of the density of a distribution is known up to one parameter θ.

theta can take a value given in the parameter spaceΘ.

A point estimator θ̂ is a function of an independent and equally distributed random

sample X1, . . . , Xn to estimate the value of θ.

θ̂(X1, . . . , Xn) depends on the random variables X1, . . . , Xn and is also random.

θ̂(x1, . . . , xn) is computed from an observed sample and is called estimated value

or estimation.

Example

If X is normally distributed, then the arithmetic mean µ̂ = x is an estimation for E(X) =

µ.
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Data Science
Point and interval estimators

Sum of random variables

For random variables X1, . . . , Xn with expected values E(X1), . . . , E(Xn) there holds:

E(

n∑
i=1

Xi) =

n∑
i=1

E(Xi)

Sum and product of independent random variables

For independent random variables X1, . . . , Xn there holds:

E(

n∏
i=1

Xi) =

n∏
i=1

E(Xi) and Var(

n∑
i=1

Xi) =

n∑
i=1

Var(Xi)
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Data Science
Point and interval estimators

Sum of independet normal distributed random variables

For independentN (µ, σ2) distributed random variables X1, . . . , Xn there holds:

X =
1

n

n∑
i=1

is a random variable withN (µ, σ2

n
) distribution.
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Data Science
Point and interval estimators

An estimator θ̂(X1, . . . , Xn) is called unbiased for θ if there holds

E(θ̂) = θ

Otherwise, it is called biased and the value

Bias(θ̂) = E(θ̂)− θ

is called bias.
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Data Science
Point and interval estimators

The empirical Variance is biased as an estimator for σ2:

E(S̃2) = E(
1

n

n∑
i=1

(Xi − X i)
2) =

n− 1

n
σ2

Therefore, one often uses the sample variance

S
2 =

1

n− 1

n∑
i=1

(Xi − X i)
2

for which there holds E(S2) = σ2.

No matter which distribution X follows, X and S2 are unbiased estimators for E(X)

and Var(X)
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Data Science
Point and interval estimators

Estimator θ̂ can compute an approximate value for θ, but how accurate is this value?

Idea: Interval estimator

Construction of an interval around θ̂, which contains the real value θ with a given prob-

ability.
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Data Science
Point and interval estimators

Let gl(X1, . . . , Xn) and gu(X1, . . . , Xn) be two functions of a random sample with gl ≤ gu

such that

P(gl ≤ θ ≤ gu) = 1− α.

Then we call the interval [gl, gu] confidence interval for θ with confidence level 1− α.

The boundaries gl and gu are called lower and upper confidence bound.

If gl 6= −∞ and gu 6= ∞ then we call the confidence interval two-sided.
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Data Science
Point and interval estimators

Assuming that θ is a random variable. Then is θ̂ a sampled value from a distribution.

Thus we can compute the probability that θ̂ was chosen.

0.0

0.1

0.2

0.3

0.4

de
ns

it
y Green area: Probability that θ̂ lies in

this area

Red area: Probability that θ̂ lies in

this area

Green and red area define interval sizes - moving these to θ̂ in center gives interval

where θ lies compared to θ̂ with corresponding probabilities.
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Data Science
Point and interval estimators

Confidence interval for E(X) : X ∼ N (µ, σ2) with σ known

X1, . . . , Xn sample ofN (µ, σ2) distribution

Of interest: How close is X , unbiased estimator of the expected value, to the

unknown exact mean value µ.

Use: Random distribution of X , i.e. X isN (µ, σ
n
) distributed

Further assumption: σ2 is known
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Data Science
Point and interval estimators

For every probability 1− α, there are quantile z1−α
2
such that

P(−z1−α
2
≤ X − µ

σ√
n

≤ z1−α
2
) = 1− α

Since σ > 0 there holds

− z1−α
2
≤ X − µ

σ√
n

≤ z1−α
2

⇔− z1−α
2

σ√
n
≤ X − µ ≤ z1−α

2

σ√
n

⇔− X − z1−α
2

σ√
n
≤ −µ ≤ −X + z1−α

2

σ√
n

⇔X + z1−α
2

σ√
n
≥ µ ≥ X − z1−α

2

σ√
n
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Data Science
Point and interval estimators

For every probability 1− α, there are quantile z1−α
2
such that

P(−z1−α
2
≤ X − µ

σ√
n

≤ z1−α
2
) = 1− α

Since σ > 0 there holds

− z1−α
2
≤ X − µ

σ√
n

≤ z1−α
2

⇔− z1−α
2

σ√
n
≤ X − µ ≤ z1−α

2

σ√
n

⇔− X − z1−α
2

σ√
n
≤ −µ ≤ −X + z1−α

2

σ√
n

⇔X + z1−α
2

σ√
n
≥ µ ≥ X − z1−α

2

σ√
n
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Data Science
Point and interval estimators

The probability that the random interval[
X − z1−α

2

σ√
n
, X + z1−α

2

σ√
n

]
contains the real value µ equals to 1− α.

For a concrete sample (i.e. a sample is observed), the interval boundaries can be

computed. Resulting interval is called 100(1− α)% confidence interval for the

expected value.

1− α is also called confidence probability or safety probability

With larger sample size n, the interval becomes smaller
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Data Science
Point and interval estimators

Example

Sample for weight of bonbon packages [g]:

64.1, 64.7, 64.5, 64.6, 64.5, 64.6, 64.8, 64.2, 64.3

Known: Weight of packages is normally distributed with σ = 1

Task: 95%-confidence interval of the package weight. n = 10, x = 64.46 (parameter

estimator for µ = E(X)). α = 0.05, z1−α/2 = z0.975 = 1.96

[
X − z1−α

2

σ√
n
, X + z1−α

2

σ√
n

]
⇒

[
64.46− 1.96

1√
10

, 64.46 + 1.96
1√
10

]
= [63.84, 65.08]
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Data Science

Confidence intervals

Confidence intervals for expected values
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Data Science
Confidence intervals for expected values

Point estimate gives estimation for θ̂, which is normally not identically with the real

value θ

interval estimation gives information on the accuracy of the estimated value

An interval is estimated in such a way, that the probability that the real value θ is

not contained in this interval equals to α (e.g. α = 0.1, 0.05)

Real values θ is contained in this interval with confidence-probability (confidence

level) 1− α

Next?

Confidence interval for E(X) : X ∼ N (µ, σ2) with σ unknown
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Data Science
Confidence intervals for expected values

Example

Sample for weight of bonbon packages [g]:

64.1, 64.7, 64.5, 64.6, 64.5, 64.6, 64.8, 64.2, 64.3

Assumption: Weight of the packages is normally distributed, µ and σ2 unknown.

Point estimator for unknown expected value µ and unknown variance σ2 of the

package weight:

?

95% confidence interval of the package weight

?
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Data Science
Confidence intervals for expected values

X1, . . . , Xn sample of aN (µ, σ2) distribution

Then X = 1
n

n∑
i=1

Xi and S =

√
1

n−1

n∑
i=1

(Xi − X)2 are also random variables

The distribution of the random variable

T =
√
n
X − µ

S

is given by a t-distribution with r = n− 1 so-called degrees of freedom - T ∼ tr
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Data Science
Confidence intervals for expected values

Notation: P(T ≤ tr,α = α)

4 2 0 2 4
X

0.0

0.1

0.2

0.3

0.4

de
ns

it
y t1

t5
t50
N(0, 1)

t-distribution is nearlyN (0, 1) distributed for r large
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Data Science
Confidence intervals for expected values

Assumption: µ and σ2 are unknown

T = X−µ
S√
n

is tn−1 distributed, with S =

√
1

n−1

n∑
i=1

(Xi − X)2

100(1− α)% confidence interval for µ:

[X − tn−1,1−α
2

S√
n
, X + tn−1,1−α

2

S√
n
]
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Data Science
Confidence intervals for expected values

Example

Sample for weight of bonbon packages [g]:

64.1, 64.7, 64.5, 64.6, 64.5, 64.6, 64.8, 64.2, 64.3

Assumption: Weight of the package is normally distributed

Task: 95% confidence interval of the package weight?

x = 64.46, n = 10, t9,0.975 = 2.2662 s2 = 1
n−1

∑
(xi − x)2 = 0.0515, s = 0.227

[x − t9,0.975
s√
n
, x + t9,0.975

s√
n
]

=[64.46− 2.2662
0.227√

10
, 64.46 + 2.2662

0.227√
10

]

=[64.297, 64.623] 31 / 72



Data Science
Confidence intervals for expected values

Central limit theorem

For X1, . . . , Xn independent identical distributed random variables with expected value

µ and variance σ > 0, then there holds for every x ∈ R:

lim
n→∞

P

(
X1 + · · ·+ Xn − nµ√

nσ
≤ x

)
= Φ(x)

The central limit theorem gives a justification for the popularity of the normal

distribution: The sum of many independent random variables is nearly normally

distributed:

measurement errors

water / energy consumption in a city

body-weight

...
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Data Science
Confidence intervals for expected values

The distribution of a sum of sufficiently many (n large) independent, identically

distributed random variables can be approximated, due to the central limit

theorem, by a normal distribution with E(
∑

Xi) = nµ and Var(
∑

Xi) = nσ2, i.e.

n∑
i=1

Xi ≈ N (nµ, nσ2)

Rule of thumbs: n ≥ 30 is sufficiently large - but in some cases also smaller values

of n are sufficient, especially if the random variables are nearly symmetrically

distributed.
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Data Science
Confidence intervals for expected values

Arbitrary distribution, σ2 unknown, then approximately

P(−z1−α
2
≤ X − µ

S√
n

≤ z1−α
2
) ≈ 1− α for large n

and [
X − z1−α

2

S√
n
, X + z1−α

2

S√
n

]
approximate 100(1− α)% confidence interval for µ.
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Data Science
Confidence intervals for expected values

(1− α)%-confidence interval for expected value E(X)

σ n distribution confidence interval

known arbitrary X ∼ N (µ, σ2) [
X − z1−α

2

σ√
n
, X + z1−α

2

σ√
n

]
known large arbitrary

unknown arbitrary X ∼ N (µ, σ2)
[
X − tn−1,1−α

2

S√
n
, X + tn−1,1−α

2

S√
n

]
unknown large arbitrary

[
X − z1−α

2

S√
n
, X + z1−α

2

S√
n

]
X1, . . . , Xn random sample, S2 = 1

n−1

n∑
i=1

(Xi − X)2, X = 1
n

n∑
i=1

Xi, p̂ = X .

35 / 72



Data Science

Statistical tests
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Data Science

Statistical tests

Statistical tests and z-test
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Data Science
Statistical tests and z-test

Confidence intervals give a range, in which the desired value is probably located - but

often one has an assumptionwhich value the estimator estimates. Probability to verify

that this assumption is correct - or maybe probability to reject this assumption?

Example

The average grade in math tests is 3

The average height of males in Germany is 1.8m

The average speed on the highway is 120km/h
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Data Science
Statistical tests and z-test

Example

A machine packs chocolates in boxes with a target weight of 15g

Question: Does the machine need an adjustment?

Weight of the boxes is a random variable X with parameter E(X)

X : arithmetic mean of n = 10 randomly chosen boxes

If x around 10 or 20 –> Probably E(X) is more than or less than 15!

If x around 15 –> Probably E(X) is also close to 15!

Attention:

x around 10 or 20 is also possible even if E(X) is close to 15 (first degree error)

x around 15 is also possible even in E(X)more than or less than 15 (second degree error)

Ideal: Formal rule and statement on error probability.
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Data Science
Statistical tests and z-test

Testproblem

Formulation of a null hypothesis H0 and formulation of an alternative hypothesis H1

which are mutually exclusive.

Test-statistic

Function of a random sample X1, . . . , Xn, which allows assessing ifH0 orH1 is more like

to be valid.

Rejection area

Values of the test-statistic, for which H0 is rejected - also named critical area.
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Data Science
Statistical tests and z-test

First degree error: Reject H0, in the case that H0 is true

Second degree error: Keep H0, in the case that H1 is true

H0 not rejected reject H0

H0 correct right decision first degree error

H0 false second degree error right decision

Significance level: P(rejectH0|H0 correct) ≤ α

Test quality: 1− β = P(not rejectH0|H0 false) ≤ α

The value α is set before performing the test. Usually: α = 0.01, 0.05, 0.1
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Data Science
Statistical tests and z-test

Example

Assumption: X is normally distributed, X ∼ N (µ, σ2), σ = 1.7 known

Rejection area: {x|x ≤ 14 or x ≥ 16}

Then, the first degree error

P(X ≤ 14|µ = 15) + P(X ≥ 16|µ = 15)

= P(Z ≤ 14− 15

1.7/
√
10

) + P(Z ≥ 16− 15

1.7/
√
10

) = P(Z ≤ −1.86) + P(Z ≥ 1.86) = 0.062

A small area of rejection leads to a small first degree error, because the probability

of rejections becomes less, i.e. {x|x ≤ 13.5 or x ≥ 16.5} gives 0.005
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Data Science
Statistical tests and z-test

Example

Area of rejection: {x|x ≤ 13.5 or x ≥ 16.5}

Probability β for a second degree error for µ = 13 is

β = P(13.5 < X < 16.5|µ = 13)

= P(
13.5− 13

1.7/
√
10

< Z <
16.5− 13

1.7/
√
10

)

= P(0.930 < Z < 6.510) = 0.176

The test quality for µ = 13 is given by 1− β = 0.824.

A larger sample size n for a fixed α reduces β.
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Data Science
Statistical tests and z-test

Test procedure for µ in the case of a normal distribution with known variance

X1, . . . , Xn random sample of X ∼ N (µ, σ2), σ2 known

1 Formulation of the test-problem:

H0: µ = µ0 vs. H1: µ 6= µ0 (two-sided)

H0: µ ≤ µ0 vs. H1: µ > µ0 (right-sided)

H0: µ ≥ µ0 vs. H1: µ < µ0 (left-sided)

The rejection of H0 is a hard conclusion for which the probability of a wrong

decision is limited by α. Therefore, the important statement to be verified is

placed in the alternative.

2 Chose a proper significance level α

3 Test-statistic:

Z =
X − µ0

σ/
√
n
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Data Science
Statistical tests and z-test

4 Determination of the rejection range for selected α: Reject H0, if

|z| > z1−α/2 for a two-sided test

z > z1−α for a right-sided test

z < −z1−α for a left-sided test

5 Compute the value of the test statistic for an observed sample: z = x−µ0

σ/
√

n

6 Decision:

Reject H0 if the value of z is in the rejection area

Do not reject H0 if the value of z is not in the rejection area

Name the used significance level

Formulate the significance of the test decision for the original question
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Data Science
Statistical tests and z-test

Components of a statistical hypothesis test

1 Test-problem

2 Choice of significance level

3 test-statistic

4 Area of rejection

5 Value of test-statistic

6 decision
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Data Science
Statistical tests and z-test

Example

Box weights:

14.6, 15.7, 16, 13.5, 16, 16.5, 17, 15.4, 15.3, 15

Assumption: X is normally distributed: X ∼ N (µ, σ2), σ = 1.7

1 Test-problem H0 = µ vs. H1 6= 15

2 Choice of significance level α = 0.05

3 test-statistic Z = X−µ0

σ/
√
15

4 Area of rejection Reject H0 if |z| > z1−α/2 = z0.975 = 1.96

5 Value of test-statistic x = 15.5, σ = 1.7, n = 10, z = 15.5−15
1.7/

√
10

= 0.93

6 Decision The null hypothesis is not rejected. The sample gives for the confidence

level 0.05 no clue that the machine needs to be adjusted.
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Data Science
Statistical tests and z-test

(approximative) z-test

Assumption: X ∼ N (µ, σ2) or n ≥ 30, σ known

Null hypothesis Alternative hypothesis Test-statistics Rejection area

µ = µ0 µ 6= µ0

Z = X−µ0

σ/
√

n

|z| > z1−α
2

µ ≥ µ0 µ < µ0 z > z1−α

µ ≤ µ0 µ > µ0 z < −z1−α
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Data Science

Statistical tests

One sample t-test for location
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Data Science
One sample t-test for location

t-Test: Same construction idea as Gaussian test - but assuming normal

distribution with unknown variance.

Reminder t-distribution:

For a random sample X1, . . . , Xn of normally distributed random variables with expected value µ

there holds

T =
X − µ

S/
√
n
with S2 =

1

n− 1

n∑
1

(Xi − X)2

is t-distributed with parameter n− 1 (degrees of freedom)

Quantiles tn−1,α can be read from a table
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Data Science
One sample t-test for location

Test procedure for µ in the case of a normal distribution with known variance

X1, . . . , Xn random sample of X ∼ N (µ, σ2), σ2 unknown

1 Formulation of the test-problem:

H0: µ = µ0 vs. H1: µ 6= µ0 (two-sided)

H0: µ ≤ µ0 vs. H1: µ > µ0 (right-sided)

H0: µ ≥ µ0 vs. H1: µ < µ0 (left-sided)

2 Chose a proper significance level α

3 Test-statistic:

T =
X − µ0

σ/
√
n

4 gives a statement on H0 and distribution is known. For µ = µ0 T is t-distributed

with n− 1 degrees of freedom, such that

P(T ≤ tn−1,1−α) = P(
X − µ0

S/
√
n

≤ tn−1,1−α) = 1− α
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Data Science
One sample t-test for location

4 Determination of the rejection range for selected α: Reject H0, if

|t| > tn−1,1−α/2 for a two-sided test

t > tn−1,1−α for a right-sided test

t < −tn−1,1−α for a left-sided test

5 Compute the value of the test statistic for an observed sample: t = x−µ0

σ/
√

n

6 Decision:

Reject H0 if the value of t is in the rejection area

Do not reject H0 if the value of t is not in the rejection area

Name the used significance level

Formulate the significance of the test decision for the original question
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Data Science
One sample t-test for location

Example

Temperature in January

2.3, 4, 4.5, 1.5, 2.2, 1.7, 3.6, 6.1, 1.2, 5.3, 3.3,−0.6, 5.2, 0.2, 0.9, 2.6, 2.2, 3.4, 2.8, 2.6

Assumption: X is normally distributed, σ2 unknown

1 Test-problem H0: µ ≤ 2 vs. H1: µ > 2

2 Choice of significance level: α = 0.05

3 test-statistic: T = X−µ0

S/
√

n

4 Area of rejection: (n = 20) Reject H0 if t > t19,0.95 = 1.729

5 Value of test-statistic x = 2.75, S2 = 2.99, n = 20, t = 1.94

6 decision: Null hypothesis (µ ≤ 2) is rejected, since the value of t is in the rejection

area for the given significance level. 53 / 72



Data Science
One sample t-test for location

Statistical programs often give p-value

It defines the probability to observe an extreme value of the statistic in direction

of the alternative, in the case that H0 is correct.

Is the p-value small or equal to α, H0 is rejected

Attention: Riskofmisuse due to subsequent adjustment of the significance level to the

p-value. Therefore: First determine the significance level, then calculate the p-value.
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Data Science
One sample t-test for location

The hypothesis H0: µ = µ0 vs. H1: µ 6= µ0 is rejected to significance level α if

x is in the rejection area of the test

p-value is smaller than α

µ0 not in the 100(1− α)% confidence interval of µ.
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Data Science
One sample t-test for location

Normal distribution apprixomation

up to now: Assumption that a normal distribution is given

For a large sample size n (often n ≥ 30) and known variance, the central limit

theorem gives that X is approximately normal distributed and the Gaussian test

can be used approximately.

Is the variance unknown, then the t-distribution is for large n close the standard

normal distribution and the Standard deviation can be replaced by S in the

Gaussian test.
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Data Science
One sample t-test for location

Null hypothesis Alternative hypothesis Test-statistics Rejection area

(approximate) Gaussian test (X ∼ N (µ, σ2) or n ≥ 30, σ known)

µ = µ0 µ 6= µ0

Z = X−µ0

σ/
√

n

|z| > z1−α
2

µ ≥ µ0 µ < µ0 z > z1−α

µ ≤ µ0 µ > µ0 z < −z1−α

t-test on location (X ∼ N (µ, σ2), σ unknown)

µ = µ0 µ 6= µ0

T = X−µ0

S/
√

n

|t| > tn−1,1−α
2

µ ≥ µ0 µ < µ0 t > tn−1,1−α

µ ≤ µ0 µ > µ0 t < −tn−1,1−α

approximate Gaussian test (n ≥ 30, σ unknown)

µ = µ0 µ 6= µ0

Z = X−µ0

S/
√

n

|z| > z1−α
2

µ ≥ µ0 µ < µ0 z > z1−α

µ ≤ µ0 µ > µ0 z < −z1−α
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Data Science

Statistical tests

Two sample t-test for location difference
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Data Science
Two sample t-test for location difference

Of interest: Test on the difference in the expected value of two distributions

Examples

Runtime of two different algorithms

Test-results of patients with and without therapy

PISA-points of students different classes
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Data Science
Two sample t-test for location difference

Question: Measurements X and Y of the same characteristic in different situations

or populations. Here, µX , σ
2
X and µY , σ

2
Y are the corresponding expected value and

variance. Of interest is a possible difference in the situation, i.e. between µX and

µY .

Assumption:

X1, X2, . . . , Xn random sample in Situation 1 with size n

Y1, Y2, . . . , Ym random sample in Situation 2 with sizem

Both random samples are stochastically independent

For both Situations we assume a normal distribution, or we use the central limit theorem, thus

X ∼ N (µX , σ
2
X ) and Y ∼ N (µY , σ

2
Y )
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Two sample t-test for location difference

Example

Two different companies deliver chocolate bonbons in two boxes of same size

The assumption, which should be proven, is that the weight Y of the boxes of the

second company are in the mean heavier than the companies boxes of the first

company.

It is assumed, that post companies produces boxes with normally distributed

weights.

Task: Perform a statistical test with α = 0.05
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Two sample t-test for location difference

One- and twosided test problems

Null-hypothesis Alternative hypothesis

H0 : µX − µY = δ0 H1 : µX − µY 6= δ0

H0 : µX − µY ≥ δ0 H1 : µX − µY 6> δ0

H0 : µX − µY ≤ δ0 H1 : µX − µY 6< δ0

Different assumptions on the variance

σ2
X and σ2

Y are known

σ2
X and σ2

Y are unknown but equal

σ2
X and σ2

Y are unknown and possible unequal

These assumptions lead to different procedures - the last case is the most general,

therefore this case is considered.
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Two sample t-test for location difference

The test statistic with sample variance S2
X and S2

Y

T =
X − Y − δ0√
S2
X /n+ S2

Y/m

is t-distributed with degrees of freedom

k = b(S2
X /n+ S

2
Y/m)2/(

1

n− 1
(S2

X /n)
2 +

1

m− 1
(S2

Y/m)2)c

Null-hypothesis Alternative hypothesis Rejection area

H0 : µX − µY = δ0 H1 : µX − µY 6= δ0 |t| > tk,1−α/2

H0 : µX − µY ≥ δ0 H1 : µX − µY 6> δ0 t < −tk,1−α

H0 : µX − µY ≤ δ0 H1 : µX − µY 6< δ0 t > tk,1−α

63 / 72



Data Science
Two sample t-test for location difference

Example

There was an investigation of 20 boxes of the first and 22 boxes of the second company.

X1, . . . , X20 ∼ N (µX , σ
2
X ) and Y1, . . . , Y22 ∼ N (µY , σ

2
Y )

1 Test-problem: H0 : µX − µY ≥ 0 vs. H1 : µX − µY < 0

2 Significance level: α = 0.05

3 Test-statistic: T = X−Y−δ0√
S2
X /n+S2

Y /m
with δ = 0.
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Two sample t-test for location difference

1 Area of rejection: Reject H0 if t < −1.685 since−tk,1−0.05 = t39,0.095 = −1.685

with

k =

⌊
(S2

X /n+ S
2
Y/m)2/(

1

n− 1
(S2

X /n)
2 +

1

m− 1
(S2

Y/m)2)

⌋
=

⌊
(0.8/20 + 0.9/22)2/(

1

19
(0.8/20)2 +

1

21
(0.9/22)2)

⌋
= b39.940c = 39

´
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Two sample t-test for location difference

1 Value of the test statistic: Results of the measure: x = 14.5, y = 16.3, s2Y = 0.9

t =
x − y√

s2X/n+ s2Y/m
=

14.5− 16.3√
0.8/20 + 0.9/22

= −6.328

2 Decision: The null hypothesis should be rejected, for a significance level of 5% the

bonbons of the second producer are heavier than the bonbons of the first

producer.
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Two sample t-test for location difference

up to now: Two sample t-test for location difference with two independent random

samples

Problem: The might be dependent random samples, i.e. both samples are

measured at the same statistical unit - this must be taken into account for the test

procedure

Example:

Comparison of blood pressure of a group of patients before and after a treatment

Comparison of the sales of specific companies in two different years.

Possible solution: Take the difference Di = Xi − Yi as random sample, formulate

the test problem for E(D)(= E(X)− E(Y)) and use the one random sample test.
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Two sample t-test for location difference

t-Test for location difference

Assumption: X ∼ N (µX , σ
2
X ), Y ∼ N (µY , σ

2
Y ), σX , σY unknown

Null-hypothesis Alternative hypothesis Test-statistic Rejection area

H0 : µX − µY = δ0 H1 : µX − µY 6= δ0
T = X−Y−δ0√

S2
X /n+S2

Y /m

|t| > tk,1−α/2

H0 : µX − µY ≥ δ0 H1 : µX − µY 6> δ0 t < −tk,1−α

H0 : µX − µY ≤ δ0 H1 : µX − µY 6< δ0 t > tk,1−α

with k = b(S2
X /n+ S2

Y/m)2/( 1
n−1 (S

2
X /n)

2 + 1
m−1 (S

2
Y/m)2)c

68 / 72



Data Science

Summary & Outlook

69 / 72



Data Science
Summary & Outlook: Summary

You understand what confidence intervals are and how they are computed

You are able to communicate uncertenty concerning estimators

You are able to perform statistical tests and interpret the results
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Summary & Outlook: Outlook

Continue statistical tests
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Data Science
Summary & Outlook: Acknowledgement

Parts of the lecture base on the lecture ”Statistics” (FH Dortmund)

by

Prof. Dr. Sonja Kuhnt and Prof. Dr. Nadja Bauer.
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