

# Data Science

## 10: Confidence intervals & tests

# Data Science

## Recap

Situation: The form of the density of a distribution is known up to one parameter  $\theta$ .  $\theta$  can take a value given in the parameter space  $\Theta$ .

A **point estimator**  $\hat{\theta}$  is a function of an independent and equally distributed random sample  $X_1, \dots, X_n$  to estimate the value of  $\theta$ .

- $\hat{\theta}(X_1, \dots, X_n)$  depends on the random variables  $X_1, \dots, X_n$  and is also random.
- $\hat{\theta}(x_1, \dots, x_n)$  is computed from an observed sample and is called **estimated value** or **estimation**.

### Example

If  $X$  is normally distributed, then the arithmetic mean  $\hat{\mu} = \bar{x}$  is an estimation for  $E(X) = \mu$ .

# Data Science

## Recap

Let  $g_l(X_1, \dots, X_n)$  and  $g_u(X_1, \dots, X_n)$  be two functions of a random sample with  $g_l \leq g_u$  such that

$$P(g_l \leq \theta \leq g_u) = 1 - \alpha.$$

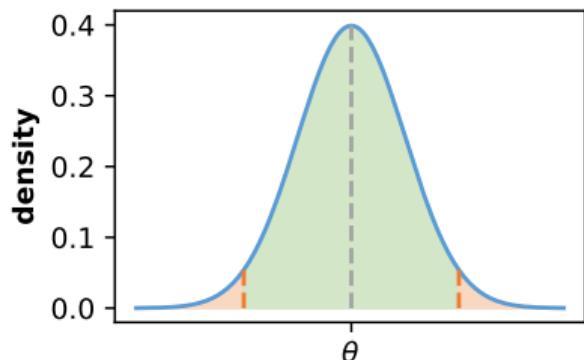
Then we call the interval  $[g_l, g_u]$  **confidence interval** for  $\theta$  with **confidence level**  $1 - \alpha$ .

- The boundaries  $g_l$  and  $g_u$  are called **lower** and **upper confidence bound**.
- If  $g_l \neq -\infty$  and  $g_u \neq \infty$  then we call the confidence interval **two-sided**.

# Data Science

## Recap

Assuming that  $\theta$  is a random variable. Then is  $\hat{\theta}$  a sampled value from a distribution. Thus we can compute the probability that  $\hat{\theta}$  was chosen.



- Green area: Probability that  $\hat{\theta}$  lies in this area
- Red area: Probability that  $\hat{\theta}$  lies in this area

Green and red area define interval sizes - moving these to  $\hat{\theta}$  in center gives interval where  $\theta$  lies compared to  $\hat{\theta}$  with corresponding probabilities.

# Data Science

## Recap

$(1 - \alpha)\%$ -confidence interval for expected value  $E(X)$

| $\sigma$ | $n$       | <b>distribution</b>                 | <b>confidence interval</b>                                                                                                          |
|----------|-----------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| known    | arbitrary | $X \sim \mathcal{N}(\mu, \sigma^2)$ | $\left[ \bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \right]$ |
| known    | large     | arbitrary                           |                                                                                                                                     |
| unknown  | arbitrary | $X \sim \mathcal{N}(\mu, \sigma^2)$ | $\left[ \bar{X} - t_{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1, 1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$ |
| unknown  | large     | arbitrary                           | $\left[ \bar{X} - z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \bar{X} + z_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \right]$           |

$X_1, \dots, X_n$  random sample,  $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ ,  $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ ,  $\hat{p} = \bar{X}$ .

# Data Science

## Today

we  
focus  
on  
students

### Statistical tests

## 1 Statistical tests

- Statistical tests (z- and t-test)
- Two sample t-test for location difference

## 2 Summary & Outlook

## Statistical tests

## Statistical tests

Statistical tests (z- and t-test)

# Data Science

## Statistical tests (z- and t-test)

Confidence intervals give a range, in which the desired value is probably located - but often one has an assumption which value the estimator estimates. Probability to verify that this assumption is correct - or maybe probability to reject this assumption?

### Example

- The average grade in math tests is 3
- The average height of males in Germany is 1.8m
- The average speed on the highway is 120km/h

# Data Science

## Statistical tests (z- and t-test)

### Example

A machine packs chocolates in boxes with a target weight of 15g

**Question:** Does the machine need an adjustment?

- Weight of the boxes is a random variable  $X$  with parameter  $E(X)$
- $\bar{X}$ : arithmetic mean of  $n = 10$  randomly chosen boxes
  - If  $\bar{x}$  around 10 or 20 → Probably  $E(X)$  is more than or less than 15!
  - If  $\bar{x}$  around 15 → Probably  $E(X)$  is also close to 15!
- **Attention:**
  - $\bar{x}$  around 10 or 20 is also possible even if  $E(X)$  is close to 15 (first degree error)
  - $\bar{x}$  around 15 is also possible even in  $E(X)$  more than or less than 15 (second degree error)

**Ideal:** Formal rule and statement on error probability.

### Testproblem

Formulation of a **null hypothesis**  $H_0$  and formulation of an **alternative hypothesis**  $H_1$  which are mutually exclusive.

### Test-statistic

Function of a random sample  $X_1, \dots, X_n$ , which allows assessing if  $H_0$  or  $H_1$  is more likely to be valid.

### Rejection area

Values of the test-statistic, for which  $H_0$  is rejected - also named critical area.

# Data Science

## Statistical tests (z- and t-test)

- **First degree error:** Reject  $H_0$ , in the case that  $H_0$  is true
- **Second degree error:** Keep  $H_0$ , in the case that  $H_1$  is true

|               | $H_0$ not rejected  | reject $H_0$       |
|---------------|---------------------|--------------------|
| $H_0$ correct | right decision      | first degree error |
| $H_0$ false   | second degree error | right decision     |

- **Significance level:**  $P(\text{reject } H_0 | H_0 \text{ correct}) \leq \alpha$
- **Test quality:**  $1 - \beta = P(\text{not reject } H_0 | H_0 \text{ false}) \leq \alpha$

The value  $\alpha$  is set before performing the test. Usually:  $\alpha = 0.01, 0.05, 0.1$

# Data Science

## Statistical tests (z- and t-test)

### Example

- Assumption:  $X$  is normally distributed,  $X \sim \mathcal{N}(\mu, \sigma^2)$ ,  $\sigma = 1.7$  known
- Rejection area:  $\{\bar{x}|\bar{x} \leq 14 \text{ or } \bar{x} \geq 16\}$
- Then, the first degree error

$$\begin{aligned} P(\bar{X} \leq 14|\mu = 15) + P(\bar{X} \geq 16|\mu = 15) \\ = P\left(Z \leq \frac{14 - 15}{1.7/\sqrt{10}}\right) + P\left(Z \geq \frac{16 - 15}{1.7/\sqrt{10}}\right) = P(Z \leq -1.86) + P(Z \geq 1.86) = 0.062 \end{aligned}$$

- A small area of rejection leads to a small first degree error, because the probability of rejections becomes less, i.e.  $\{\bar{x}|\bar{x} \leq 13.5 \text{ or } \bar{x} \geq 16.5\}$  gives 0.005

# Data Science

## Statistical tests (z- and t-test)

### Example

**Area of rejection:**  $\{\bar{x}|\bar{x} \leq 13.5 \text{ or } \bar{x} \geq 16.5\}$

- Probability  $\beta$  for a second degree error for  $\mu = 13$  is

$$\begin{aligned}\beta &= P(13.5 < \bar{X} < 16.5 | \mu = 13) \\ &= P\left(\frac{13.5 - 13}{1.7/\sqrt{10}} < Z < \frac{16.5 - 13}{1.7/\sqrt{10}}\right) \\ &= P(0.930 < Z < 6.510) = 0.176\end{aligned}$$

The test quality for  $\mu = 13$  is given by  $1 - \beta = 0.824$ .

A larger sample size  $n$  for a fixed  $\alpha$  reduces  $\beta$ .

# Data Science

## Statistical tests (z- and t-test)

For confidence intervals we differ between three settings: The random sample consists on independent and identically distributed random variables, where the distribution is ...

- a normal distribution with known variance
- a normal distribution with unknown variance
- an arbitrary distribution

Depending on the situation we chose a different distribution to work with.

In the following we do the same for the tests. In detail, the chosen test-statistic depend on the distribution of the random sample.

# Data Science

## Statistical tests (z- and t-test)

In the following we consider the general test procedure.

$X_1, \dots, X_n$  independent and identically distributed random variables.

1 Formulation of the **test-problem**:

- $H_0: \mu = \mu_0$  vs.  $H_1: \mu \neq \mu_0$  (two-sided)
- $H_0: \mu \leq \mu_0$  vs.  $H_1: \mu > \mu_0$  (right-sided)
- $H_0: \mu \geq \mu_0$  vs.  $H_1: \mu < \mu_0$  (left-sided)

The rejection of  $H_0$  is a hard conclusion for which the probability of a wrong decision is limited by  $\alpha$ . Therefore, the **important statement to be verified is placed in the alternative**.

2 Chose a proper **significance level**  $\alpha$

3 **Test-statistic:**  $TS$ : Choice depends on the distribution of the random variable.

# Data Science

## Statistical tests (z- and t-test)

- 4 Determination of the **area of rejection** for selected  $\alpha$ : Reject  $H_0$ , if
  - $|ts| > ts_{1-\alpha/2}$  for a two-sided test
  - $ts > ts_{1-\alpha}$  for a right-sided test
  - $ts < -ts_{1-\alpha}$  for a left-sided test
- 5 Compute the **value of the test statistic** for an observed sample:  $ts$
- 6 **Decision:**
  - **Reject**  $H_0$  if the value of  $z$  is in the rejection area  
Do **not reject**  $H_0$  if the value of  $z$  is **not** in the rejection area
  - Name the used significance level
  - Formulate the significance of the test decision for the original question

# Data Science

## Statistical tests (z- and t-test)

### Components of a statistical hypothesis test

- 1 Test-problem
- 2 Choice of significance level
- 3 test-statistic
- 4 Area of rejection
- 5 Value of test-statistic
- 6 Decision

# Data Science

## Statistical tests (z- and t-test)

It remains to choose the proper test-statistic!

- Example showed normal distribution with known variance.
- For a large sample size  $n$  (often  $n \geq 30$ ) and known variance, the central limit theorem gives that  $\bar{X}$  is approximately normal distributed and the Gaussian test can be used approximately.
- Is the variance unknown, then the  $t$ -distribution is for large  $n$  close the standard normal distribution and the Standard deviation can be replaced by  $S$  in the Gaussian test.

# Data Science

## Statistical tests (z- and t-test)

$X \sim \mathcal{N}(\mu, \sigma^2)$  or  $n \geq 30$ ,  $\sigma$  known: (approximate) Gaussian test

Use standard normal distribution as test-statistic:  $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$

$X \sim \mathcal{N}(\mu, \sigma^2)$ ,  $\sigma$  unknown: t-test

Use t-distribution as test-statistic:  $T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$

$n \geq 30$ ,  $\sigma$  unknown: approximate Gaussian test

Use standard normal distribution as test-statistic:  $Z = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$

### Reminder t-distribution

- For a random sample  $X_1, \dots, X_n$  of normally distributed random variables with expected value  $\mu$  there holds

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} \text{ with } S^2 = \frac{1}{n-1} \sum_1^n (X_i - \bar{X})^2$$

is t-distributed with parameter  $n - 1$  (degrees of freedom)

- Quantiles  $t_{n-1, \alpha}$  can be read from a table

# Data Science

## Statistical tests (z- and t-test)

Null hypothesis      Alternative hypothesis      Test-statistics      Rejection area

(approximate) Gaussian test ( $X \sim \mathcal{N}(\mu, \sigma^2)$  or  $n \geq 30, \sigma$  known)

|                  |                  |                                                 |                                  |
|------------------|------------------|-------------------------------------------------|----------------------------------|
| $\mu = \mu_0$    | $\mu \neq \mu_0$ | $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$ | $ z  > z_{1 - \frac{\alpha}{2}}$ |
| $\mu \geq \mu_0$ | $\mu < \mu_0$    |                                                 | $z < -z_{1 - \alpha}$            |
| $\mu \leq \mu_0$ | $\mu > \mu_0$    |                                                 | $z > z_{1 - \alpha}$             |

t-test on location ( $X \sim \mathcal{N}(\mu, \sigma^2)$ ,  $\sigma$  unknown)

|                  |                  |                                            |                                       |
|------------------|------------------|--------------------------------------------|---------------------------------------|
| $\mu = \mu_0$    | $\mu \neq \mu_0$ | $T = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$ | $ t  > t_{n-1, 1 - \frac{\alpha}{2}}$ |
| $\mu \geq \mu_0$ | $\mu < \mu_0$    |                                            | $t < -t_{n-1, 1 - \alpha}$            |
| $\mu \leq \mu_0$ | $\mu > \mu_0$    |                                            | $t > t_{n-1, 1 - \alpha}$             |

approximate Gaussian test ( $n \geq 30, \sigma$  unknown)

|                  |                  |                                            |                                  |
|------------------|------------------|--------------------------------------------|----------------------------------|
| $\mu = \mu_0$    | $\mu \neq \mu_0$ | $Z = \frac{\bar{X} - \mu_0}{S / \sqrt{n}}$ | $ z  > z_{1 - \frac{\alpha}{2}}$ |
| $\mu \geq \mu_0$ | $\mu < \mu_0$    |                                            | $z < -z_{1 - \alpha}$            |
| $\mu \leq \mu_0$ | $\mu > \mu_0$    |                                            | $z > z_{1 - \alpha}$             |

# Data Science

## Statistical tests (z- and t-test)

### Statistical programs often give *p*-value

- It defines the probability to observe an extreme value of the statistic in direction of the alternative, in the case that  $H_0$  is correct.
- Is the *p*-value small or equal to  $\alpha$ ,  $H_0$  is rejected

**Attention:** Risk of misuse due to subsequent adjustment of the significance level to the *p*-value. Therefore: First determine the significance level, then calculate the *p*-value.

The hypothesis  $H_0: \mu = \mu_0$  vs.  $H_1: \mu \neq \mu_0$  is rejected to significance level  $\alpha$  if

- $\bar{x}$  is in the rejection area of the test
- *p*-value is smaller than  $\alpha$
- $\mu_0$  not in the  $100(1 - \alpha)\%$  confidence interval of  $\mu$ .

# Data Science

## Statistical tests (z- and t-test)

### Example: Box weights

14.6, 15.7, 16, 13.5, 16, 16.5, 17, 15.4, 15.3, 15

**Assumption:**  $X$  is normally distributed:  $X \sim \mathcal{N}(\mu, \sigma^2)$ ,  $\sigma = 1.7$

- 1 Test-problem**  $H_0 = \mu$  vs.  $H_1 \neq 15$
- 2 Choice of significance level**  $\alpha = 0.05$
- 3 test-statistic**  $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{15}}$
- 4 Area of rejection** Reject  $H_0$  if  $|z| > z_{1-\alpha/2} = z_{0.975} = 1.96$
- 5 Value of test-statistic**  $\bar{x} = 15.5$ ,  $\sigma = 1.7$ ,  $n = 10$ ,  $z = \frac{15.5 - 15}{1.7 / \sqrt{10}} = 0.93$
- 6 Decision** The null hypothesis is not rejected. The sample gives for the confidence level 0.05 no clue that the machine needs to be adjusted.

# Data Science

## Statistical tests (z- and t-test)

### Example: Temperature in January

2.3, 4, 4.5, 1.5, 2.2, 1.7, 3.6, 6.1, 1.2, 5.3, 3.3, -0.6, 5.2, 0.2, 0.9, 2.6, 2.2, 3.4, 2.8, 2.6

**Assumption:**  $X$  is normally distributed,  $\sigma^2$  unknown

- 1 Test-problem**  $H_0: \mu \leq 2$  vs.  $H_1: \mu > 2$
- 2 Choice of significance level:**  $\alpha = 0.05$
- 3 test-statistic:**  $T = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$
- 4 Area of rejection:** ( $n = 20$ ) Reject  $H_0$  if  $t > t_{19,0.95} = 1.729$
- 5 Value of test-statistic**  $\bar{x} = 2.75, S^2 = 2.99, n = 20, t = 1.94$
- 6 Decision:** Null hypothesis ( $\mu \leq 2$ ) is rejected, since the value of  $t$  is in the rejection area for the given significance level.

## Statistical tests

Two sample t-test for location difference

# Data Science

## Two sample t-test for location difference

**Of interest:** Test on the difference in the expected value of two distributions

### Examples

- Runtime of two different algorithms
- Test-results of patients with and without therapy
- PISA-points of students different classes

■ **Question:** Measurements  $X$  and  $Y$  of the same characteristic in different situations or populations. Here,  $\mu_X, \sigma_X^2$  and  $\mu_Y, \sigma_Y^2$  are the corresponding expected value and variance. Of interest is a possible difference in the situation, i.e. between  $\mu_X$  and  $\mu_Y$ .

■ **Assumption:**

- $X_1, X_2, \dots, X_n$  random sample in Situation 1 with size  $n$
- $Y_1, Y_2, \dots, Y_m$  random sample in Situation 2 with size  $m$
- Both random samples are stochastically independent
- For both Situations we assume a normal distribution, or we use the central limit theorem, thus

$$X \sim \mathcal{N}(\mu_X, \sigma_X^2) \text{ and } Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$$

### Example

- Two different companies deliver chocolate bonbons in two boxes of same size
- The assumption, which should be proven, is that the weight  $Y$  of the boxes of the second company are in the mean heavier than the companies boxes of the first company.
- It is assumed, that post companies produces boxes with normally distributed weights.

**Task:** Perform a statistical test with  $\alpha = 0.05$

# Data Science

## Two sample t-test for location difference

### One- and twosided test problems

| Null-hypothesis                     | Alternative hypothesis              |
|-------------------------------------|-------------------------------------|
| $H_0 : \mu_X - \mu_Y = \delta_0$    | $H_1 : \mu_X - \mu_Y \neq \delta_0$ |
| $H_0 : \mu_X - \mu_Y \geq \delta_0$ | $H_1 : \mu_X - \mu_Y < \delta_0$    |
| $H_0 : \mu_X - \mu_Y \leq \delta_0$ | $H_1 : \mu_X - \mu_Y > \delta_0$    |

### Different assumptions on the variance

- $\sigma_X^2$  and  $\sigma_Y^2$  are known
- $\sigma_X^2$  and  $\sigma_Y^2$  are unknown but equal
- $\sigma_X^2$  and  $\sigma_Y^2$  are unknown and possibly unequal

These assumptions lead to different procedures - the last case is the more general, therefore this case is considered.

# Data Science

## Two sample t-test for location difference

The test statistic with sample variance  $S_X^2$  and  $S_Y^2$

$$T = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{S_X^2/n + S_Y^2/m}}$$

is t-distributed with degrees of freedom

$$k = \lfloor (S_X^2/n + S_Y^2/m)^2 / (\frac{1}{n-1}(S_X^2/n)^2 + \frac{1}{m-1}(S_Y^2/m)^2) \rfloor$$

| Null-hypothesis                     | Alternative hypothesis              | Rejection area           |
|-------------------------------------|-------------------------------------|--------------------------|
| $H_0 : \mu_X - \mu_Y = \delta_0$    | $H_1 : \mu_X - \mu_Y \neq \delta_0$ | $ t  > t_{k,1-\alpha/2}$ |
| $H_0 : \mu_X - \mu_Y \geq \delta_0$ | $H_1 : \mu_X - \mu_Y < \delta_0$    | $t < -t_{k,1-\alpha}$    |
| $H_0 : \mu_X - \mu_Y \leq \delta_0$ | $H_1 : \mu_X - \mu_Y > \delta_0$    | $t > t_{k,1-\alpha}$     |

### Example

There was an investigation of 20 boxes of the first and 22 boxes of the second company.

$X_1, \dots, X_{20} \sim \mathcal{N}(\mu_X, \sigma_X^2)$  and  $Y_1, \dots, Y_{22} \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$

- 1 Test-problem:**  $H_0 : \mu_X - \mu_Y \geq 0$  vs.  $H_1 : \mu_X - \mu_Y < 0$
- 2 Significance level:**  $\alpha = 0.05$
- 3 Test-statistic:**  $T = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{S_X^2/n + S_Y^2/m}}$  with  $\delta = 0$ .

1 **Area of rejection:** Reject  $H_0$  if  $t < -1.685$  since  $-t_{k,1-0.05} = t_{39,0.095} = -1.685$  with

$$\begin{aligned} k &= \left\lfloor (S_X^2/n + S_Y^2/m)^2 / \left( \frac{1}{n-1} (S_X^2/n)^2 + \frac{1}{m-1} (S_Y^2/m)^2 \right) \right\rfloor \\ &= \left\lfloor (0.8/20 + 0.9/22)^2 / \left( \frac{1}{19} (0.8/20)^2 + \frac{1}{21} (0.9/22)^2 \right) \right\rfloor \\ &= \lfloor 39.940 \rfloor = 39 \end{aligned}$$

# Data Science

## Two sample t-test for location difference

- 1 **Value of the test statistic:** Results of the measure:  $\bar{x} = 14.5$ ,  $\bar{y} = 16.3$ ,  $s_y^2 = 0.9$

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{s_x^2/n + s_y^2/m}} = \frac{14.5 - 16.3}{\sqrt{0.8/20 + 0.9/22}} = -6.328$$

- 2 **Decision:** The null hypothesis should be rejected, for a significance level of 5% the bonbons of the second producer are heavier than the bonbons of the first producer.

For this test, it is important that the samples are independent - but there might be a dependent random sample, both samples are measured at the same statistical unit - this must be taken into account for the test procedure.

### ■ Example:

- Comparison of blood pressure of a group of patients before and after a treatment
- Comparison of the sales of specific companies in two different years.

■ **Possible solution:** Take the difference  $D_i = X_i - Y_i$  as random sample, formulate the test problem for  $E(D)(= E(X) - E(Y))$  and use the one sample test.

# Data Science

## Two sample t-test for location difference

### t-Test for location difference

Assumption:  $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ ,  $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ ,  $\sigma_X, \sigma_Y$  unknown

| Null-hypothesis                     | Alternative hypothesis              | Test-statistic                                                      | Rejection area           |
|-------------------------------------|-------------------------------------|---------------------------------------------------------------------|--------------------------|
| $H_0 : \mu_X - \mu_Y = \delta_0$    | $H_1 : \mu_X - \mu_Y \neq \delta_0$ |                                                                     | $ t  > t_{k,1-\alpha/2}$ |
| $H_0 : \mu_X - \mu_Y \geq \delta_0$ | $H_1 : \mu_X - \mu_Y < \delta_0$    | $T = \frac{\bar{X} - \bar{Y} - \delta_0}{\sqrt{S_X^2/n + S_Y^2/m}}$ | $t < -t_{k,1-\alpha}$    |
| $H_0 : \mu_X - \mu_Y \leq \delta_0$ | $H_1 : \mu_X - \mu_Y > \delta_0$    |                                                                     | $t > t_{k,1-\alpha}$     |

with  $k = \lfloor (S_X^2/n + S_Y^2/m)^2 / (\frac{1}{n-1}(S_X^2/n)^2 + \frac{1}{m-1}(S_Y^2/m)^2) \rfloor$

## Summary & Outlook

# Data Science

## Summary & Outlook: Summary

- You are able to perform statistical tests and interpret the results

# Data Science

## Summary & Outlook: Outlook

**Data preparation and decision trees**

# Data Science

## Summary & Outlook: Acknowledgement

Parts of the lecture base on the lecture "Statistics" (FH Dortmund)  
by  
Prof. Dr. Sonja Kuhnt and Prof. Dr. Nadja Bauer.