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Understanding

CRISP-DM process model gives an overview on the steps needed for developing a ma-

chine learning model.
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Already seen: Depending on the source of data, the quality can differ extremely

m There could be different formats (e.g. German or international date format)
m There could be different sources which needs to be joined
m There could be missing values

The process of preparing one or multiple data sets for machine learning is called data
preparation.
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A decision tree is an ordered directed tree, by following the tree to leafs decisions are
done.

® In every node a test on an attribute of the data is done (e.g. height of a person is
larger than 1.7 m)

m Each leaf describes an outcome, i.e. a class (e.g. van, sports car etc.)
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The entropy H(M) of a set M can be computed by

H(M) = Z —px - logy (px)

XEM

where pyx is the relative frequency of an element x in the set M. Here, we define O -
log,(0) = 0.

5/29



Fachhochschule Data SCIence
Dortmund Recap

University of Applied Sciences and Arts

Fora split S = {s|s € M}, we can compute the gain H; of order by
He = Hy — EB(S),

where &(S) denotes the weighted sum of the entropy of the splitted subsets.
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Decision trees are a simple method for decision or classification problems.

Pros
m Easy to be implemented (if-then-rules)

m Fastin usage (only follow the path through tree)
m Explainable and easy to understand (no black-box)
m Can be extended to regression problems

Cons
m Not useful for numerical attributes (discretization)
m Need to define fixed boundaries (e.g. age < 40)

m Could lead to small-scale distinctions (overfitting)
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Evaluation of models
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Machine Learning in a nutshell
m Evaluating models

Summary
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Machine Learning in a nutshell
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Machine Learning in a nutshell
Evaluating models
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A machine learning model, like decision trees or linear regression, are fitted to a given
dataset.

m Training process finds optimal fit for the given data

m Problem: The perfect fit for the training data might not be the perfect general
model!
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Error

Unknown data

Training data

Iterations

The problem of overfitting occurs, if a model fits too good to the training-data, and
therefore performs worse on other data.

The problem of underfitting occurs, ifa model can not adequately capture the structure
of the data.
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m Compute error (e.g. residuum) on independent dataset

In machine learning it is common to split the given data set into a training set and a
test set. This is called train-test splitting.

m The train-test splitting can be obtained in different ways, depending on the
application and data:

m Random split: Randomly separate the data in train/test

m Temporal split: For temporal data, split could be obtained by putting data before a date into
train and after a date into test

m Often 80/20 or 70/30 split, i.e. use 80% of the data for training and 20% for testing
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In order to compare machine learning models, it is useful to add a additional dataset,
i.e. one performs a train-validation-test split.

m Train set: Used to train the different models
m Validation set: Used to compare the different models

m Test set: Used to verify that the best model performs well

How to measure the quality of an algorithm?
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The mean squared error (MSE) of a predictor 6 for an unknown value 6 is given by
A 2
E ((9 — 0) ) Thus, for predicted values y; with exact values y; the MSE is given by

1« .
MSE = - > vi—w)?

i=1

There are several alternative

n
m Mean average error (MAE): 1 3™ |y; — y|
i=1

U/fflfff\

n
m Mean absolute percentage error: 1 3° T
1

i=1

Task: What is the difference of these errors?
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The confusion matrix is a table, collecting the quality of predictions on a dataset for
binary classification problem.

actual values
Positive negative

True positive (TP)  False positive (FP)
False negative (FN) True negative (TN)

predicted Positive
values Negative
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false negatives true negatives

true positive

anlHsod as|ey
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Task: Assume that the following table gives the results of a machine learning model on

a test-set. What is the confusion matrix?
i lyvi Vi

O 00 N O T A W N -,
R, P, O 0O O R R R, R R
R, OO R PR PR P O O K

-
o
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Task: Assume that the following table gives the results of a machine learning model on
a test-set. What is the confusion matrix?

/ Vi Vi
1 1 1
2 1 O
1 O
3 actual values
4 1 1
511 1 ! 0
predicted 114 2
6 |0 1
values 0|3 1
7 0 1
8 0 O
9 1 0
10 | 1 1
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For the TP, FP, TN, FN values of confusion matrix we define

m the accuracy as

TP + TN
TP + TN + FP + FN

m the precision as

TP
TP + FP

m the recall as

TP
TP + FN
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true negatives

true positive
true positive

true positive

false negatives

false negatives true negatives

true positive
annisod asjey

true positive

true positive

anisod asjey

Proportion of all pre-
dicted correct.

Proportion of the true pre-
dicted correct.

Proportion of the true
class found.
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Task: Compute accuracy, precision and recall for the given confusion matrix

acltualvaluoes = accuracy: %
isi TP
m precision:
predicted 1| 4(0P) 2(FP) p - TP+FP
values 0| 3(FN) 1(N) m recall: 7
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Task: Compute accuracy, precision and recall for the given confusion matrix

actual values . TP+ TN
B acCuracy: oy

! 0 m precision: -~
predicted 1| 4(@P) 2(FP) T'P TP+FP
values 0| 3(FN) 1(TN) m recall: 7y

. PN 441 5 _
W ACCUracy: oAy — a14372 — 10 — 00
m precision: % = ﬁ =2 =066
. P 4 __ 4 _
m recall: I = 143 = 7 = 0.57
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The predictive performance of a classifier can be measured with help of the F1 score,

which is given by
_q precision - recall

~ “precision + recall

m Harmonic mean of precision and recall
m Ifrecall and precision equals to 1, the F; score equals to 1.

m If recall or precision equals to 0, the F; score equals to 0.
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Task: Compute the F; score of the given precision and recall values!

m precision- % = % =2 =10.66

m recall: TP+FN 413 =4 057
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Task: Compute the F; score of the given precision and recall values!

m precision: ' = 115 = § = 0.66

L 4 4 —0.57

m recall: TP+FN = ir3 7 =

precision - recall 0.66 - 0.57
Fi=2 =

= =0.31
precision + recall 0.66 + 0.57

25/29



; Data Science
achhochschule
Dortmund Evaluating models

University of Applied Sciences and Arts

Computing the metrics of a machine learning model gives a glimpse on the quality.
Unfortunately, this not always gives an information if the results are useful or not.

m |5 90% accuracy good?

m Assume 100 data points, 90 are of class A and 10 of class B.
m Predicting always class A would lead to an accuracy of 90%

m Defining a naive reference solution could help in interpreting the results
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Consider the following setting: A machine learning model should predict the price of a
car, based on the properties brand, style and engine.

Task: What are possible naive reference solutions?

27/29



Data Science

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Summary
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m You know how to evaluate machine learning models and compare them
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