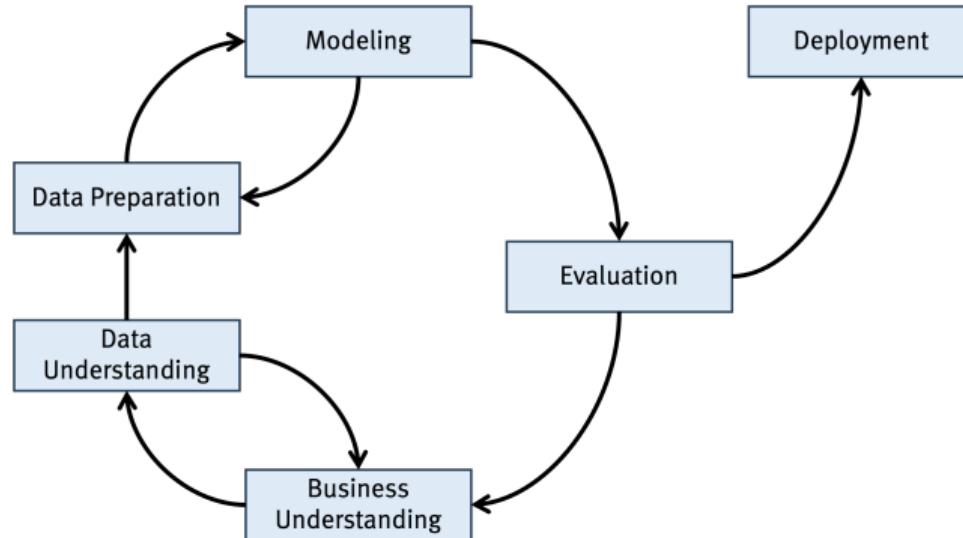


Data Science

13: Machine Learning in a nutshell

Data Science

Recap



CRISP-DM process model gives an overview on the steps needed for developing a machine learning model.

Data Science

Recap

Already seen: Depending on the source of data, the quality can differ extremely

- There could be different formats (e.g. German or international date format)
- There could be different sources which needs to be joined
- There could be missing values
- ...

The process of preparing one or multiple data sets for machine learning is called **data preparation**.

Data Science

Recap

A decision tree is an ordered directed tree, by following the tree to leafs decisions are done.

- In every node a test on an attribute of the data is done (e.g. height of a person is larger than 1.7 m)
- Each leaf describes an outcome, i.e. a class (e.g. van, sports car etc.)

Data Science

Recap

The **entropy** $H(M)$ of a set M can be computed by

$$H(M) = \sum_{x \in M} -p_x \cdot \log_2(p_x)$$

where p_x is the relative frequency of an element x in the set M . Here, we define $0 \cdot \log_2(0) = 0$.

Data Science

Recap

For a split $S = \{s | s \subset M\}$, we can compute the **gain** H_G **of order** by

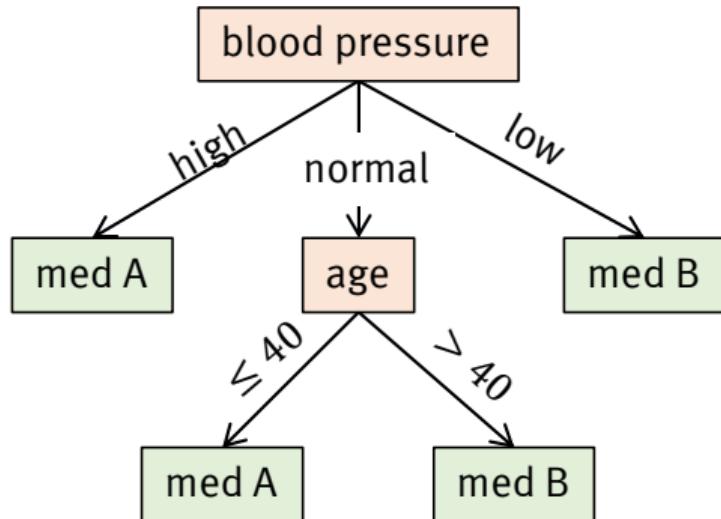
$$H_G = H_M - \oplus(S),$$

where $\oplus(S)$ denotes the weighted sum of the entropy of the splitted subsets.

$$\oplus(S) = \sum_{s \in S} \frac{|s|}{|M|} H(s).$$

Data Science

Recap



Data Science

Recap

Decision trees are a simple method for decision or classification problems.

Pros

- Easy to be implemented (if-then-rules)
- Fast in usage (only follow the path through tree)
- Explainable and easy to understand (no black-box)
- Can be extended to regression problems

Cons

- Not useful for numerical attributes (discretization)
 - Need to define fixed boundaries (e.g. $age < 40$)
- Could lead to small-scale distinctions (overfitting)

Data Science

Today

we
focus
on
students

Evaluation of models

1 Machine Learning in a nutshell

- Evaluating models

2 Summary

Data Science

we
focus
on
students

Machine Learning in a nutshell

Machine Learning in a nutshell

Evaluating models

Data Science

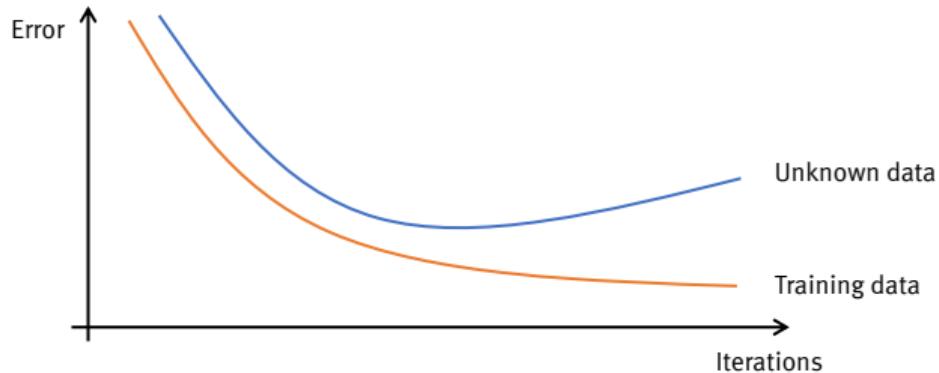
Evaluating models

A machine learning model, like decision trees or linear regression, are fitted to a given dataset.

- Training process finds optimal fit for the given data
- **Problem:** The perfect fit for the training data might not be the perfect general model!

Data Science

Evaluating models



The problem of **overfitting** occurs, if a model fits too good to the training-data, and therefore performs worse on other data.

The problem of **underfitting** occurs, if a model can not adequately capture the structure of the data.

Data Science

Evaluating models

- Compute error (e.g. residuum) on independent dataset

In machine learning it is common to split the given data set into a training set and a test set. This is called **train-test splitting**.

- The train-test splitting can be obtained in different ways, depending on the application and data:
 - Random split: Randomly separate the data in train/test
 - Temporal split: For temporal data, split could be obtained by putting data before a date into train and after a date into test
- Often 80/20 or 70/30 split, i.e. use 80% of the data for training and 20% for testing

Data Science

Evaluating models

In order to compare machine learning models, it is useful to add a additional dataset, i.e. one performs a **train-validation-test split**.

- **Train set:** Used to train the different models
- **Validation set:** Used to compare the different models
- **Test set:** Used to verify that the best model performs well

How to measure the quality of an algorithm?

Data Science

Evaluating models

The **mean squared error (MSE)** of a predictor $\hat{\theta}$ for an unknown value θ is given by $E\left(\left(\hat{\theta} - \theta\right)^2\right)$. Thus, for predicted values \hat{y}_i with exact values y_i the MSE is given by

$$MSE = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

There are several alternative

- Mean average error (MAE): $\frac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$
- Mean absolute percentage error: $\frac{1}{n} \sum_{i=1}^n \frac{|y_i - \hat{y}_i|}{|y_i|}$

Task: What is the difference of these errors?

Data Science

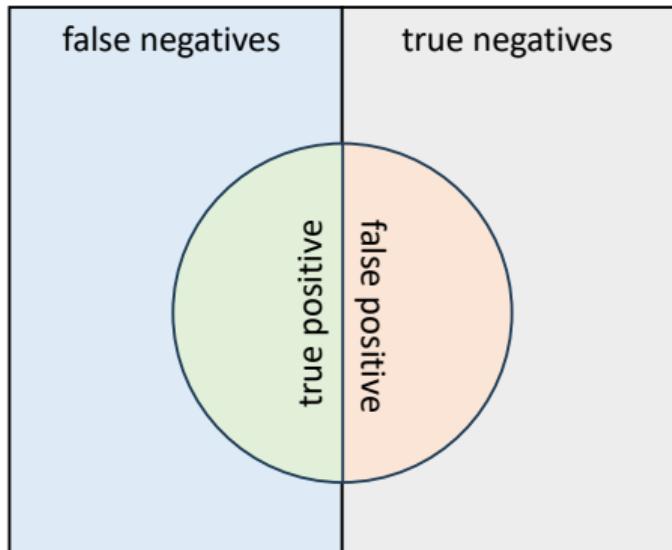
Evaluating models

The **confusion matrix** is a table, collecting the quality of predictions on a dataset for binary classification problem.

		actual values	
		Positive	negative
predicted values	Positive	True positive (TP)	False positive (FP)
	Negative	False negative (FN)	True negative (TN)

Data Science

Evaluating models



Data Science

Evaluating models

Task: Assume that the following table gives the results of a machine learning model on a test-set. What is the confusion matrix?

i	y_i	\hat{y}_i
1	1	1
2	1	0
3	1	0
4	1	1
5	1	1
6	0	1
7	0	1
8	0	0
9	1	0
10	1	1

Data Science

Evaluating models

Task: Assume that the following table gives the results of a machine learning model on a test-set. What is the confusion matrix?

i	y_i	\hat{y}_i	actual values	
			1	0
		predicted values	1	0
1	1	1	1	0
2	1	0	1	0
3	1	0	1	0
4	1	1	1	0
5	1	1	1	0
6	0	1	1	0
7	0	1	1	0
8	0	0	1	0
9	1	0	1	0
10	1	1	1	0

Data Science

Evaluating models

For the TP, FP, TN, FN values of confusion matrix we define

- the **accuracy** as

$$\frac{TP + TN}{TP + TN + FP + FN}$$

- the **precision** as

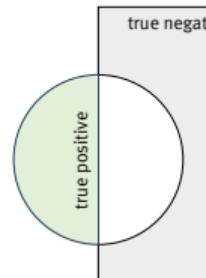
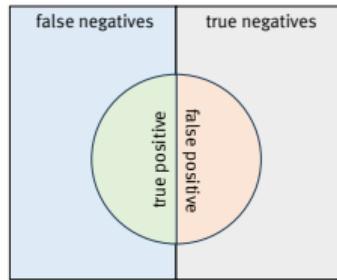
$$\frac{TP}{TP + FP}$$

- the **recall** as

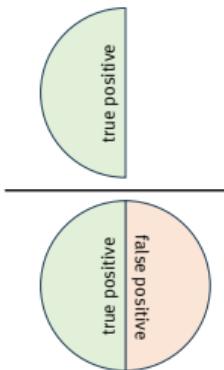
$$\frac{TP}{TP + FN}$$

Data Science

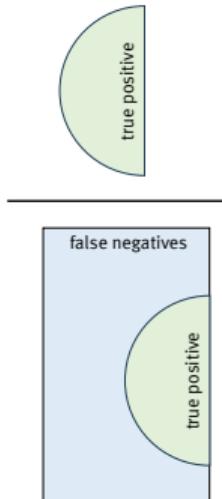
Evaluating models



Proportion of all predicted correct.



Proportion of the true predicted correct.



Proportion of the true class found.

Data Science

Evaluating models

Task: Compute accuracy, precision and recall for the given confusion matrix

		actual values	
		1	0
predicted values	1	4 (TP)	2 (FP)
	0	3 (FN)	1 (TN)

■ **accuracy:** $\frac{TP+TN}{TP+TN+FP+FN}$

■ **precision:** $\frac{TP}{TP+FP}$

■ **recall:** $\frac{TP}{TP+FN}$

Data Science

Evaluating models

Task: Compute accuracy, precision and recall for the given confusion matrix

		actual values	
		1	0
predicted values	1	4 (TP)	2 (FP)
	0	3 (FN)	1 (TN)

■ **accuracy:** $\frac{TP+TN}{TP+TN+FP+FN}$

■ **precision:** $\frac{TP}{TP+FP}$

■ **recall:** $\frac{TP}{TP+FN}$

■ **accuracy:** $\frac{TP+TN}{TP+TN+FP+FN} = \frac{4+1}{4+1+3+2} = \frac{5}{10} = 0.5$

■ **precision:** $\frac{TP}{TP+FP} = \frac{4}{4+2} = \frac{4}{6} = 0.66$

■ **recall:** $\frac{TP}{TP+FN} = \frac{4}{4+3} = \frac{4}{7} = 0.57$

Data Science

Evaluating models

The predictive performance of a classifier can be measured with help of the **F1** score, which is given by

$$F_1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

- Harmonic mean of precision and recall
- If recall and precision equals to 1, the F_1 score equals to 1.
- If recall or precision equals to 0, the F_1 score equals to 0.

Data Science

Evaluating models

Task: Compute the F_1 score of the given precision and recall values!

■ **precision:** $\frac{TP}{TP+FP} = \frac{4}{4+2} = \frac{4}{6} = 0.66$

■ **recall:** $\frac{TP}{TP+FN} = \frac{4}{4+3} = \frac{4}{7} = 0.57$

Data Science

Evaluating models

Task: Compute the F_1 score of the given precision and recall values!

■ **precision:** $\frac{TP}{TP+FP} = \frac{4}{4+2} = \frac{4}{6} = 0.66$

■ **recall:** $\frac{TP}{TP+FN} = \frac{4}{4+3} = \frac{4}{7} = 0.57$

$$F_1 = 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = 2 \frac{0.66 \cdot 0.57}{0.66 + 0.57} = 0.31$$

Data Science

Evaluating models

Computing the metrics of a machine learning model gives a glimpse on the quality. Unfortunately, this not always gives an information if the results are useful or not.

- Is 90% accuracy good?
 - Assume 100 data points, 90 are of class *A* and 10 of class *B*.
 - Predicting always class *A* would lead to an accuracy of 90%
- Defining a naive reference solution could help in interpreting the results

Data Science

Evaluating models

Consider the following setting: A machine learning model should predict the price of a car, based on the properties brand, style and engine.

Task: What are possible naive reference solutions?

Data Science

we
focus
on
students

Summary

Data Science

Summary: Summary

- You know how to evaluate machine learning models and compare them