Fachhochschule
Dortmund

University of Applied Sciences and Arts

Softwaretechnik 2
Architekturstile

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Entwicklungs- und Architekturtrends im Zeitverlauf

University of Applied Sciences and Arts

Unvollstandige Auswahl groBer Softwaretechnik-Trends

Micro-
services

Model Driven
| Architecture J

Self-Contained

Systems
2005 (scs)
‘ " cloud
Serviceorientierung . Computing

e _-

COY tvacan.oossst

Prozedurale
Komponenten-

Programmierung
108 orientierung Schichten-
5 (KBSE) architektur
Broker
Architecture |
(z.B. CORBA)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Architekturstile IlI

Microservice Architecture (MSA)
Self-contained Systems (SCS)

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Microservice Architecture (MSA)

Fachhochschule
Dortmund Entwicklungs- und Architekturtrends im Zeitverlauf

University of Applied Sciences and Arts

Unvollstandige Auswahl groBer Softwaretechnik-Trends

Micro-

services

Model Driven
| Architecture J

Self-Contained

Systems
2005 (scs)
‘ " cloud
Serviceorientierung . Computing

e _-

COY tvacan.oossst

Prozedurale
Komponenten-

Programmierung
108 orientierung Schichten-
5 (KBSE) architektur
Broker
Architecture |
(z.B. CORBA)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund SOA
University of Applied Sciences and Arts
Ruckblick
4)
. _ _ _ Frontend
= In einer SOA-Landschaft jede Anwendung in Services L)
aufgeteilt, auch solche, die schon vor EinfGhrung der N
SOA existierten. Integration & Orchestrierung
= Beispielsweise konnte ein Customer Relationship (Geschaftsprozesse)
Management (CRM) Dienste zum Anlegen von S <
Kunden, zum Abfragen von Informationen tber ’ o‘ ' w‘ ’ m‘ ’ 0‘ ' 0‘ ' m‘ ' 0‘ ' m‘
Kunden oder zum Anlegen neuer Interaktionen mit ‘E’ ‘é g ‘é ‘E’ g ‘é ‘é
einem Kunden anbieten. olla|lla||lo||le||lo|la|l @
o o wil|lo|l|lo||lo|la||lo||lo||a
= Das CRM ist ein Backend-System und damit eine e NI A
Deployment-Einheit, da alle Services nur gemeinsam anderes
; ; 2 CRM Backend-System
in Produktion gebracht werden kénnen. y

\, /\ /

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund SOA

University of Applied Sciences and Arts

Rickblick

= Die Kommunikation der Services muss eine einheitliche Technologie nutzen, tUber die alle
Services erreichbar sind.
= asynchron: beispielsweise ESBs (Enterprise Service Bus)
= synchron: beispielsweise SOAP, das u.a. die Kommunikation tber HTTP erlaubt

= Die Integration und Orchestrierung wird Ublicherweise in einer eigenen Schicht umgesetzt. Sie
implementiert Geschaftsprozesse mit Hilfe der Services.
= Wenn ein neuer Service in den Prozess integriert werden soll, ist dazu nur eine Anderung
des Prozesses notwendig. Die Services bleiben unverandert.

= Verschiedenste Frontends konnen die Orchestrierung und die einzelnen Services nutzen, so
dass schnell dedizierte Frontends angeboten werden konnen.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund SOA

University of Applied Sciences and Arts

Vorteile

Vorteile (u.a.) Q

= Services kdnnen in unterschiedlichsten
Geschaftsprozessen
und/oder unterschiedlichsten
Frontends wiederverwendet werden.

= Anderungen an den
Geschaftsprozessen sind moglich,
ohne dass dazu die Services geandert
werden mussen. Es muss lediglich die
Orchestrierung angepasst werden.
- Flexibilitdt + Ressourcenschonung

SWT2 Architekturstile

Herausforderungen (u.a.) Q

= Allerdings ist eine SOA mit einem erheblichen
Aufwand und erheblichen Investitionen verbunden:

« Alle IT-Systeme mussen in Services aufgeteilt werden,
die im Netzwerk ansprechbar sind.

* Alle Geschaftsprozesse in der Orchestrierung-Schicht
umgesetzt werden.

+ Benutzungsschnittstellen miissen neu gestaltet
werden — Ublicherweise als Portal.

= Die intendierte Flexibilitat kann nur erzielt werden,
wenn notwendige Anderungen in den Services, der

Orchestrierung oder im Portal isoliert werden
kdnnen.

© Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund SOA

University of Applied Sciences and Arts

Lessons learned

= Auf der Ebene einer unternehmensweiten IT bietet sich eigentlich immer
zumindest eine Aufteilung in Services an.

= Dazu ist eine einheitliche Kommunikationstechnologie notwendig.

= Es ist aber fraglich, ob eine vollstandige SOA mit einer Aufteilung in eine
getrennte Orchestrierung und Portal sinnvoll ist, denn das ist sehr aufwandig
und bietet kaum einen Mehrwert.

= Anforderungen moderner internetbasierter Dienstleistungen wie
beispielsweise Streaming wird dieser Architekturstil vor allem in Bereichen

wie Skalierung, Robustheit, oder Entwicklungsgeschwindigkeit nicht gerecht

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund Beispiel Spotify

University of Applied Sciences and Arts

Streaming-Dienstleister heben Skalierung auf ein anderes Niveau

75+ Millionen aktive Nutzer jeden Monat
58 Lander

20.000 Neue Songs taglich

2+ Milliarden Playlisten

,Saisonales Nutzerverhalten”

Traditionelle Architekturstile stof3en
hier an ihre Grenzen!

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
UDm\grsrit\il:ml:lierd‘Sgences and Arts M i c ro s e rVi c e S

SOA is dead long live services — Services reloaded

Kernidee

Monolithen werden in unabhangige,
separate Prozesse zerschnitten!
= ,Microservices”

(So benannt seit ca. 2011/2012)

"Microservices are small, autonomous services that work together.”

[S. Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O'Reilly Media, 2015.]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh 11

Fachhochschule
Dortmund Microservice: Ursprung

University of Applied Sciences and Arts

= der Begriff "microservice" wurde im Mai 2011 auf einem Architekten-Workshop in der
Nahe von Venedig diskutiert

= um zu beschreiben, was aus Sicht der Teilnehmer einen Ublichen Architekturstil
beschrieb, den viele von ihnen kuirzlich untersucht hatten

= in May 2012 entschied sich die gleiche Gruppe fir den Begriff ,Microservices” als
angemessene Bezeichnung

= James Lewis von ThoughtWorks prasentierte einige Ideen dazu auf der 33rd Degree,

einer Java Konferenz, in Krakow in Polen ,,Microservices — Java, the Unix Way”
[http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf]

= Fred George (ThoughtWorks) und Adrian Cockcroft damals Cloud-Architekt bei Netflix
(mit seinem Ansatz:"fine grained SOA"”) und Joe Walnes, Dan North, Evan Botcher und
Graham Tackley propagierten parallel diesen neuen Architekturstil

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts B e g r i ffs d e ﬁ n i ti O n

“In short, the microservice architectural style is an approach to

developing a single application as a suite of small services, each running
James Lewis in its own process and communicating with lightweight mechanisms,

s often an HTTP resource API. These services are built around business

' capabilities and independently deployable by fully automated

deployment machinery.”?

- James Lewis & Martin Fowler

Martin Folwer [J. Lewis und M. Fowler, “Microservices”, https://martinfowler.com/articles/microservices.html, 2014.]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

13

Fachhochschule
Dortmund Begriffsdefinition

University of Applied Sciences and Arts

= dementsprechend sind Microservices definiert ...

... als Ansatz eine einzelne Anwendung als Menge von kleinen Services zu
entwickeln, von denen jeder
= in seinem eigenen Prozess lauft und
= leichtgewichtig kommuniziert, haufig Gber eine HTTP Ressource AP!
= diese Services werden ausgerichtet auf Geschaftsfunktionen entwickelt
= sie konnen unabhangig depoyed werden durch ein voll automatisiertes
Deployment

Der Gedanke dahinter entspricht weitgehend dem der Unix-Philosophie: ,
(,Do One Thing and Do It Well") &

SWT2 Architekturstile SS 2016 = ©Prof. Dr. M. Hirsch/Prof. Dr. S . Sachweh = Fol@ R f. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Library

Playlisten

SWT2 Architekturstile

Let’s Split the Spotify Application

Suche

OVERVIEW PODCASTS

- .
aL ; %o think to |

Profil

See what your friends

are playing Friends

(" FIND FRIENDS)

Dance Rising

Gerate
© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts Letls Split the Spotify Applicaﬁon

= Jede Funktion bzw. jeder Service

D wird als eigenstandige Software
—— entwickelt > Deployment

Ubersicht

i Friends

o = Diese fungieren als Bausteine des
ggregation

.9groBen Ganzen” bzw. des Systems

Playlist U i
aylisten = Daten werden Uber fest vereinbarte

oy Kommunikationskanale zwischen
’ den Bausteinen ausgetauscht
(Schnittstellen)

Legende
g Elgrcl:sfjr:\illi:\iionskanal /’/’/ " Ch Oreog raphie anStatt
(3 Gesamtsystem e Orchestrierung

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund Microservices
University of Applied Sciences and Arts Distributed Systems
. AN
Weitere Abgrenzung zur SOA
Service-based Architecture
A
| |
Microservices Service-oriented Architecture

. Perhaps, Microservice are SOA done right.”

= Microservices und SOA haben das Ziel die Entwicklung von Software zu flexibilisieren,
allerdings auf sehr verschiedene Art.

= Microservices setzen auf einer anderen Ebene als SOA an.

* Microservices dienen zur Strukturierung einer Anwendung, wahrend
« SOA eine Strategie zur Strukturierung einer gesamten IT eines Unternehmens ist.

= SOA und Microservices unterscheiden sich von der Ausrichtung fundamental, auch
wenn sie ahnliche Kommunikationsmechanismen nutzen kdonnen.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Microservices

University of Applied Sciences and Arts

Weitere Abgrenzung zur SOA

Microservices konnen auf ein Projekt beschrankt sein
= keine unternehmensweite Entscheidung.

oder einem Docker-Container laufen.
= Starke Trennung (Entkopplung) der Microservices.

e Uber REST-Schnittstellen oder
* als Teil einer Web-Schnittstelle

SWT2 Architekturstile

Microservice 1

A

REST, v

Microservice 2

2

REST]

Microservice3

ul
Integration

REST]

Microservice 4

Microservices unabhangig voneinander in Produktion gebracht werden.

~

Microservices sind nur eine Méglichkeit der Modularisierung. Andere wie beispielsweise
Bibliotheken oder andere Mechanismen werden nicht ausgeschlossen.

Jeder Microservice kann in einem eigenen Prozess, einer eigenen virtuelle Maschine (VM)

Die Microservices mussen zu einer Anwendung kombiniert werden, wie beispielsweise

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Microservices

University of Applied Sciences and Arts

Ziele

Q Erhoffte Vorteile durch den Einsatz von Microservices?

= Wiederverwendbarkeit

Ersetzbarkeit

Technologische Heterogenitat

Robustheit
Skalierbarkeit

Einfache Bereitstellung

Parallelisierung des Entwicklungsprozesses

1) [S. Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O'Reilly Media, 2015.]
SWT2 Architekturstile 19© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Microservices

Eigenschaften

Microservice-Architekturen legen typischerweise einen Fokus auf folgende

SWT2 Architekturstile

Prinzipien'?3

O

O
O
O
O

Single Responsibility

Lose Kopplung, hohe Kohasion
Self-Containment
Unabhangigkeit und Autonomie
Single Team Ownership

1) [S.Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O'Reilly Media, 2015.]
2) [J. Lewis und M. Fowler, “Microservices”, https://martinfowler.com/articles/microservices.html, 2014.]
3) [I. Nadareishvili, R. Mitra, M. Mclarty und M. Amundsen, Microservice Architecture, B. MacDonald und H. Bauer, Hrsg. O'Reilly Media, 2016.]

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts S i n g I e R es p ons i b i I ity

Prinzipien

& Single Responsibility

O Lose Kopplung, hohe Kohésion
O Self-Containment

O Unabhangigkeit und Autonomie
O Single Team Ownership

Ein Microservice ist in der Regel fur die Realisierung genau einer
Geschaftsfunktion verantwortlich.

Entsprechend der Unix-Philosophie:
"Do One Thing and Do It Well"

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Prinzipien

O

O 0Oo8.

Single Responsibility

Lose Kopplung, hohe Kohésion
Self-Containment
Unabhangigkeit und Autonomie
Single Team Ownership

SWT2 Architekturstile

Lose Kopplung, hohe Kohasion

Microservicearchitekturen streben nach einer moglichst losen Kopplung
bezlglich:

= Austauschbarkeit

Austausch bzw. Update eines Services sollte sich nicht auf abhangige Services
auswirken (bei unveranderten Schnittstellen)

= Kommunikation

Die Kommunikation zwischen Services sollte auf ein Minimum beschrankt werden.
Die Kommunikation verlauft durch synchronen oder asynchronen Austausch
einfacher Nachrichten.

= Paradigma: Smart Endpoints, dumb pipes.
= Typische Protokolle: HTTP (RESTful), AMQP, KAFKA, gRPC, ...
= Typische Nachrichtenformate: JSON, XML, Binary.

d \Worst Case bei zu enger Kopplung: Verteilter Monolith
’r’?

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts I_O se KO p p | un g , h (0] h e KO h é S i on

Prinzipien

O Single Responsibility

Lose Kopplung, hohe Kohésion
Self-Containment

Unabhangigkeit und Autonomie

O 0Oo8.

Single Team Ownership

SWT2 Architekturstile

Ein Microservice enthalt typischerweise alle zur Umsetzung seiner
Geschaftsfunktion relevanten Domanenkonzepte.

= Verringert den Grad der Kopplung.

= Verringert die Wahrscheinlichkeit, dass Anderungen an einem
Service Anderungen an anderen Services nach sich ziehen.

= Redundanzen werden in Kauf genommen.

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts S e I f_ C o n t a i n m e n t

Prinzipien
O Single Responsibility
Lose Kopplung, hohe Kohésion

O

@ Self-Containment

O Unabhangigkeit und Autonomie
O

Single Team Ownership

SWT2 Architekturstile

Neben den relevanten Domanenkonzepten und ihrer Implementierung
umfasst jeder Microservice auch alle weiteren zu seinem Betrieb notwendigen
Ressourcen, wie bspw.:

= Schnittstellenbeschreibungen
= Datenbanken
= Application- und Web-Container wie Tomcat , Jetty

= Konfigurationen fir OS-Container wie Docker,
Continuous-Integration-Pipelines (z.B. Jenkins-Pipelines) und
Build-Management-Tools wie

= Maven oder Gradle

= Ggf. auch Teile der grafischen Oberflache

Ziel: Verringerung von Abhangigkeiten zwischen den Microservices
sowie den zustandigen Teams

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts S e I f- c 0 n t a i n m e n t

Prinzipien
O Single Responsibility
Lose Kopplung, hohe Kohésion

O

B Self-Containment

O Unabhangigkeit und Autonomie
O

Single Team Ownership

Gerate Aggregation

SWT2 Architekturstile

Varianten fir die Auslieferung von grafischen Oberflachen

1.
2.
3.

Prasentation

Logik

Préasentation

Logik

Préasentation

Logik

Aggregation

Jeder Service hat seine eigene Prasentationsschicht
Die Prasentation erfolgt zentral

Die Prasentation erfolgt komplett clientseitig

........

-

\
\

\
/ \

!

!

!

|

i e

|

H 5

i Aggregation

i

i

\

|

- \

\

\
\

7 \)
’ \ II
/ \
/ \ /
/ /
ya \ 7
/ AN /

Logik

;
/

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts U n a b h é n g i g ke it u n d A u to n O m i e

Prinzipien

O Single Responsibility

O Lose Kopplung, hohe Kohésion
O Self-Containment

K Unabhangigkeit und Autonomie
O Single Team Ownership

SWT2 Architekturstile

Der Software-Lebenszyklus eines Microservices ist unabhdngig von denen
anderer Microservices

Dies beinhaltet folgende Phasen: “The golden rule:

= Entwicklung Can you make a change to a

o T service and deploy it by itself
est without changing

= Bereitstellung (Deployment) anything else?”

= Betrieb

Ziel: Jeder Microservice soll autonom entwickelt, deployed und betrieben
werden kénnen.

[S. Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O'Reilly Media, 2015.]
© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts S i n g I e Te a m O w n e r S h i p

Prinzipien

O Single Responsibility

i

|

| '

! :

| '

| K
O Lose Kopplung, hohe Kohésion : N A
O Self-Containment : f \

| R - .
O Unabhangigkeit und Autonomie : E 5

| '] 1} .
& Single Team Ownership | g ! N

| \ / =

: \\ ’I

:

Cross-functional teams... ... organised around capabilities

Because Conway's Law

Fir jeden Microservice sollte genau ein Team verantwortlich sein:’

= Das Team ist nicht nur fiGr Entwurf und Entwicklung des Microservices
verantwortlich, sondern auch fir alle anderen Aspekte

= Cross-Functional Teams, z.B. DevOps?

1) [S.Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O'Reilly Media, 2015.]
2) [I. Nadareishvili, R. Mitra, M. Mclarty und M. Amundsen, Microservice Architecture, B. MacDonald und H. Bauer, Hrsg. O'Reilly Media, 2016.]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dor

Universit

tmund

y of Applied Sciences and Arts Single Team Ownership

Prinzipien

O

B O O 0O

ul
specialists

specialists

DBAs

o G300

Single Responsibility

Lose Kopplung, hohe Kohésion
Self-Containment
Unabhangigkeit und Autonomie
Single Team Ownership

o O

g
:
o

o
FBRR

Siloed functional teams... ... lead to silod application architectures.
Because Conway's Law

SWT2 Architekturstile

= Microservice-Architekturen erfordern in der Regel mehrere Teams fir die
Entwicklung

= Teams kdnnen anhand der technischen Skills organisiert werden:
Zum Beispiel konnen alle Frontend-Entwickler zu einem Team
zusammengefasst werden
= Urlaubsvertretung oder fachlicher Austausch sind so sehr einfach.

= Die Aufteilung der Teams beeinflusst aber die Architektur.
= Gesetz von Melvin Edward Conway

Belegt durch empirische Untersuchungen!

C o nw ay ,s L aw: /4:{:::,;;—;::*::'—’—'f:f;j:’///
Eine Organisation kann nur eine Architektur hervorbringen kann, die ihren
Kommunikationsbeziehungen entspricht.

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts S i n g I e Te a m O W n e rs h i p

Prinzipien

O

B O O 0O

Single Responsibility = Probleme der Teambildung nach technischen Skills:
Lose Kopplung, hohe Kohésion ‘6&

Self-Containment

Unabhangigkeit und Autonomie 3%33
Single Team Ownership = Verantwortlichkeiten kénnen ggf. zwischen den Teams hin- und her

y verschoben werden
R

= Die Arbeit der Teams muss eng koordiniert werden.

= Eine Verzogerung bei einem Team beeinflusst die anderen Teams.

= Cross-funktionale Teams sind bei Microservices quasi vorgezeichnet:

= Anderung soll mdglichst nur einen Microservice betreffen.

* Team bekommt die Verantwortung fur eine bestimmte Fachlichkeit, die in
WX .. einem oder mehreren Microservices implementiert ist.

 Das Team muss daher technisch breit aufgestellt sein. Es muss schlieBlich

..... Backend, Frontend und Datenbank fur die Fachlichkeit verantworten.
- passt zu agilen Teams

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts S i n g I e Te a m O W n e r S h i p

Prinzipien

O Single Responsibility

Lose Kopplung, hohe Kohésion
Self-Containment

Unabhangigkeit und Autonomie

B O O 0O

Single Team Ownership

= Vorteile cross-funktionaler Teams:
= Unabhangigkeit der Teams = wenig Absprachen

= Jeder Microservice kann mit einem eigenen Technologiestack implementiert
werden.

= Jedes Team kann die Technologie nutzen, die fiir das jeweilige Problem
angemessen ist.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Microservices

Eigenschaften

Microservice-Architekturen legen typischerweise einen Fokus auf folgende

SWT2 Architekturstile

Prinzipien'?3

O

O
O
O
O

Single Responsibility
Lose Kopplung, hohe Kohasion
Self-Containment

Unabhangigkeit und Autonomie

Single Team Ownership

1) [S.Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O'Reilly Media, 2015.]
2) [J. Lewis und M. Fowler, “Microservices”, https://martinfowler.com/articles/microservices.html, 2014.]
3) [I. Nadareishvili, R. Mitra, M. Mclarty und M. Amundsen, Microservice Architecture, B. MacDonald und H. Bauer, Hrsg. O'Reilly Media, 2016.]

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Integration - Kommunikation

University of Applied Sciences and Arts

Herausforderung Kommunikation

= Die Probleme von Microservices sind zum groBen Teil mit den gegenseitigen
Netzwerkaufrufen verbunden.

= Die einfachste Méglichkeit, eine monolithische Anwendung zu Microservices zu migrieren, ist
die Anwendung aufzuspalten und Methodenaufrufe zwischen Modulen (bzw. Microservices)
mit synchronen Netzwerkaufrufen zu ersetzen.

= Eine asynchrone Umsetzung der Kommunikation bietet allerdings Vorteile wie eine geringere
Latenz und eine losere Kopplung der Microservices.
= Die Schwierigkeit ist, sich von der Frage-Antwort-Interaktion loszul6sen.

[H. Prinz: ,,Brauchen asynchrone Microservices und SCS ein Service Mesh?”, 2020

SWT2 Architekturstile https://www.innog.com/de/articles/2020/02/service-mesh-asynchrone-microservices-scs/] © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Integration - Kommunikation

University of Applied Sciences and Arts

Herausforderung Kommunikation

Synchrone Kommunikation Asynchrone Kommunikation mit async HTTP / MQ
Client [—»| Microservice A Client [—»| Microservice A
i async HTTP
v v
Microservice B Microservice B |-~
_ _ _ _ Microservice C [<--»| MQ
Microservice D Microservice C
Microservice D [<--p»
=¥ synchron == asynchron

[H. Prinz: ,,Brauchen asynchrone Microservices und SCS ein Service Mesh?”, 2020

SWT2 Architekturstile https://www.innog.com/de/articles/2020/02/service-mesh-asynchrone-microservices-scs/] © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts B e Sti m m u n g d e r S e rVi c eg ra Be

= Risiken bei zu kleinen oder zu groBBen Services

= Netzwerkauslastung,
= Komplexitat bei Transaktionen,
= |Infrastrukturaufwand

= Wie grof3 ist ein Microservice bzw. wie gro3 ist eine ,, Geschaftsfunktion”?
= Zeilen an Code 2 7

= Komplexitatsmetriken > 7
= Anzahl an Testfallen > 7

= Es existiert kein quantitatives Mal3 fur die ,richtige” GroBe!

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts B e Sti m m u n g d e r S e rVi c eg ra Be

Mogliche (unscharfe) Kriterien zur Bestimmung der Grof3e!

= Geschaftsfunktion
Der Microservice sollte alle zur Realisierung seiner Geschaftsfunktion relevanten
Doméanenkonzepte umfassen.

= TeamgroBe
Es sollte nicht mehr als ein Team notwendig sein, um einen Microservice zu entwickeln.
Als TeamgroBe werden haufig 5 — 7 Personen angegeben (,, Two-Pizza-Teams”).

= Verstehbarkeit

Ein Microservice sollte zur Ganze von einem einzelnen Entwickler Base—
. Microservices-
verstanden werden kdnnen. Praxisbuch

» Ersetzbarkeit

Ein Microservice sollte leicht ersetzbar sein (, Two-Week-Implementation™).

1) [Eberhard Wolff: Das Microservices-Praxisbuch, Hrsg. dpunkt.verlag, 2018.]
SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund
Entwurfsmuster in Microservicearchitekturen

= In der Regel werden bestimmte Geschaftsfunktions-unabhangige Services

bendtigt, sogenannte infrastrukturelle Services. The pattems P ———
= wiederverwendbare, bewahrte Losungen fir die o et o
Erstellung von Microservicearchitekturen
(9 Entwurfsmustel’) [https://microservices.io/patterns/] Decomposition Emm-lm
Chris Richardson: R
Microservice Patterns.
MicrogEgii®” / Hrsg. Manning, 2018.
Pﬁtt’;' . X Reliability
Beispiele: I
Service Discovery, APl Gateway, e
Load Balancer, Cuircuit Breaker, Teamso
Authentication,Config Storage ... -

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund))
University of Applied Sciences and Arts S e rv I C e D I s c o v e ry

= Woher wissen die einzelnen Services eigentlich, wie sie die anderen Services erreichen konnen?

= Service Discovery ist vergleichbar mit einer SOA-Registry.
« Services melden sich an einer zentralen Stelle unter einem Alias an.

« Andere Services kdnnen diesen Alias bei der Service Discovery anfragen und
erhalten die tatsachliche Adresse.
“:e:::;y'

HTTP
Client

= Client-side Service Discovery
* Netzwerkadresse einer Serviceinstanz wird automatisiert bei
einer Service Registry registriert.

* Sollte die Serviceinstanz terminieren, wird der “Tod"” des
Service mittels Heartbeat-Mechanismus detektiert.

SERVICE
INSTANCE A

SERVICE
INSTANCE B

+ Services konnen mithilfe einer bereitgestellten APl die
Adresse anderer Serviceinstanzen bei der Registry anfragen.

« Typische Vertreter: Eureka (Spring Cloud bzw. Netflix OSS) oder Consul (HashiCorp)

Bildquelle : NGINX,
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

© Prof. Dr. Sabine Sachweh

SWT2 Architekturstile

https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

Fachhochschule
Dortmund

University of Applied Sciences and Arts

D Das APl Gateway fungiert fiir Clienten als
zentraler Zugangspunkt zum System

= Fir Clienten sind die hintergelagerten
. \ Services versteckt, d.h. ein Client merkt u.U.
/ Ubersicht \ . . .
j gar nicht, dass es sich um eine
;‘ S APl Microservicearchitektur handelt.
! Gateway
\\‘ Playlisten .

-

API Gateways werden teilweise um weitere
Funktionalitaten erganzt

= Load Balancing

Library

Legende

= Security

@ Microservice
— Kommunikationskanal

m
("} Gesamtsystem

SWT2 Architekturstile

© Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund

University of Applied Sciences and Arts

Codebeispiel

<<component>>
<<microservice>>
ItemService

|
|
1 <<Realization>>

<<component>>
<<microservice>>
LocationService

' <<Realization>>

\V/

<<Interface>>

Iteminterface L -=====
<<yse>>
+..()

<<component>>
<<microservice>>
OrderService
{Programming Language = "Java"}
{Foundation = "Spring Boot"}
{Database = "MongoDB"}

& \V4

<<Interface>>
<<use>> Locationinterface

+.()

1
<<Realization>>
I

\V/

<<Realization>>

<<Interface>>
Orderinterface
{Mapping = "/resources/v1/orderinterface"}
{Format = "JSON"}

<<Interface>>
Invoicelnterface
{Mapping = "/resources/v1/invoiceinterface"}
{Format = "JSON"}

+createOrder(order : Order) : Order
+readOrdner(orderld : string) : Order
{Mapping = "/order/idXid}"}
+updateOrder(order : Order) : Order

+createlnvoice(orderld : string, locationld : string) : Invoice
{Mapping = "/invoice/orderid/{orderld}/locationid/{locationld}"}

SWT2 Architekturstile

Verflgbar auf GitHub: https://github.com/SeelabFhdo/SWT2-OrderSystem

© Prof. Dr. Sabine Sachweh

https://github.com/SeelabFhdo/SWT2-OrderSystem

Fachhochschule
Dortmund . .
University of Appl jed Sciences and Arts AnwendunngelspleIe

=

Spotify s

o eoay

UBER

oo NETFLIX

ST ZThalia amazon

Bucher & mehr

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

l Browser

(Smart)

TV

l“‘”‘dj / Toblet

l Spielkov\sole

MedLa-‘PLayer

Load Balawncer
(Amazon ELB)

HTT?
rv.quuts

Beispiel:
Netflix

PLATFORM SERVICES
, Monitoring, Configuration, Logging,

Securilj

il¥n,
Rx

Service Registry

%2 ; IE)2 Device Cv\dromts,

Adapter (Groowy)

AN

l Web API Gatewa

(unterscheidet Clunts)v ,

S&reamung Control API
(Playback Service, Assembilng)

NN

A

EDGE
SERVICES

Faull Tolerance Lavyer

ur Java, dyn, Routing, Caching, DI-Container

SWT2 Architekturstile

[Stefan Zérner: Drei zentrale Entwurfsfragen bei vertikalen Anwendungsarchitekturen, Java Forum Nord. Hannover, 2018.]

IV N N N s /7 /7 T -
: ST
Billing Es:‘,uc.
Playback Review Similar Content Trials
/ Subsrciptions
7 ~ S —— ya 1 1 Cancellakion v
NS Price Calculator MID-TIER REST
. s i o L
Member ’ Payment Recommendation zt:coountrﬁ“; / Gifts SERVICES a
e - Z — 4 Social Sharing \
Search
DRM Encoding Search Hinks
| 4 A LA A N
Data Access Service (REST), inkl. DAOs Mapper API, Connection Pooling
Cassandra Amazoh BACKEND | IAAS
Cluster st SERVICES | SERVICES
: :::::: ‘:1 : Grole Files Exents Messaging . u o \i o ‘L::!“:! :‘\“’_“(]—11:- 1;1))*";::‘" 1: h‘,“‘{'

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Microservices

University of Applied Sciences and Arts
Fazit - Silver Bullet ?!

= Heterogenitat
Vorteil: Flexibilitat in Technologie-Wahl
Nachteil: Mehr Know-how notwendig, hohere Betriebskosten, mehr Komplexitat

= Resilienz (Widerstandsfahigkeit)
Vorteil: Sicherheit gegen Infrastruktur-Ausfall
Nachteil: muss explizit dafir programmiert werden
(, Circuit Breaker” Pattern, Auto-Reconnect, etc.)

= Skalierbarkeit
Vorteil: hohere Entwickler-Effizienz, hohere Runtime-Performance

Nachteil: erhohte Komplexitat, Service Discovery, schwierigeres Monitoring

= EasyDeployment
Vorteil: jeder einzelne Microservice leichter installierbar/upgradebar
Nachteil: Gesamtanwendung hat viele Abhangigkeiten

SWT2 Architekturstile [R.S. Engelschall: ,,Microservices - © Prof. Dr. Sabine Sachweh
Architekturansatz mit groen Herausforderungen und gewissen Nebenwirkungen”, 2016]

Fachhochschule
Dortmund Microservices

University of Applied Sciences and Arts

Fazit - Silver Bullet ?!

Organisatorische Ausrichtung
Vorteil: stéarkerer Fokus auf fachliche Einheiten (> Conway’s Law)
Nachteil: eventuell mehrere technische Durchstiche notwendig

= Komponierbarkeit

Vorteil: Funktionalitaten flexibel zusammenbaubar

Nachteil: erhohte Komplexitat durch Orchestrierung/Choeographie, mehr Abhangigkeiten entstehen
= Wiederverwendbarkeit

Vorteil: Funktionalitaten in mehreren Anwendungen, nur einmal pflegen

Nachteil: Alle Anwendungen gleichzeitig betroffen

= Austauschbarkeit

Vorteil: Funktionalitaten getrennt austauschbar (Update/Upgrade)
Nachteil: Alle Anwendungen gleichzeitig betroffen

SWT2 Architekturstile [R.S. Engelschall: ,,Microservices - © Prof. Dr. Sabine Sachweh
Architekturansatz mit groen Herausforderungen und gewissen Nebenwirkungen”, 2016]

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Self Contained Systems (SCS)

Fachhochschule
Dortmund Entwicklungs- und Architekturtrends im Zeitverlauf

University of Applied Sciences and Arts

Unvollstandige Auswahl groBer Softwaretechnik-Trends

Micro-

services

Model Driven
| Architecture J

Self-Contained

Systems
2005 (scs)

@etorienti%

!
Serviceorientierung \._.Computing

COY tvacan.oossst

Prozedurale
Komponenten-

Programmierung
108 orientierung Schichten-
5 (KBSE) architektur
Broker
Architecture |
(z.B. CORBA)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund Self-contained System (SCS)

University of Applied Sciences and Arts

= Microservices enthalten viele Freiheitsgrade, wie beispielsweise die GréBe der Services, die
Art der Kommunikation und Integration oder das Schneiden der Services

= Self-contained Systems (SCSs) sind Microservices mit einer Reihe konkreter Festlegungen:

= Jedes SCS ist eine eigenstandige Web-Anwendung inkl. Daten, Logik und Code zur Darstellung
der Web-Schnittstelle.

= Jedes SCS soll seine eigene Ul haben und sich auch keinen Geschaftscode mit anderen SCS teilen.

= Ein SCS kann auch eine Service-API haben, um die Logik fiir andere SCS oder mobile Clients
anzubieten.

= Jedes SCS wird von einem Team verantwortet.

= Die Kommunikation mit Fremdsystemen und anderen SCSs ist nach Moglichkeit asynchron.
- Entkopplung

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund Self-contained System (SCS)

University of Applied Sciences and Arts

Integration

= SCSs konnen zu Anwendungen zusammengesetzt werden.

= Neben der asynchronen Kommunikation wird primar eine Integration auf Ebene der
Weboberflachen empfohlen. Beispielsweise Gber

= Weblinks, die ein Nutzer allerdings explizit anklicken muss; oder tber

= JavaScript-Code, der eine Seite nach bestimmten Links scannt und die Links durch den Inhalt der
referenzierten Seite ersetzt; oder durch

* Features von Web-Servern wie Server-Side Includes, d.h. der Web Server ersetzt selbst
Teile der Web-Seite durch die referenzierten Inhalte.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund Self-contained System (SCS)

University of Applied Sciences and Arts

Mikro- und Makro-Architektur

SCS koénnen groBer als Microservices sein (= komplette Web-Anwendung)

ein SCS kann intern aus mehreren Microservices zusammengesetzt sein

= mehrere kleinere Deployment-Einheiten

= Komplexitat steigt, weil diese Instanzen alle verwaltet bzw. betrieben werden mussen
= Aufteilung ist also ein Trade-Off

Bei der Architektur eines SCS unterscheidet man die Mikro- und Makro-Architektur:

* Mikro-Architektur < Entscheidungen, die jedes Team flr sein SCS selber treffen kann.

« Makro-Architektur < Entscheidungen, die global fir alle Teams und SCSs festgelegt werden.

Nur wenige Entscheidungen mussen zwingend in der Makro-Architektur getroffen werden
wie beispielsweise das Protokoll fir die Kommunikation der SCSs untereinander oder die
Technologien fur die Ul-Integration.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund Self-contained System (SCS)

University of Applied Sciences and Arts

Abgrenzung gegenlber Microservices

= Beide Ansatze:
= Aufteilung eines Systems in kleinere (Service-)Einheiten auf.
= Ein Team verantwortet Komponente (Microservice oder SCS)

= SCSs sind im Vergleich zu Microservices eher grobgranular
- komplette Webanwendungen

= SCS fordern noch starker die lose Kopplung der
Komponenten

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Entwicklungs- und Architekturtrends im Zeitverlauf

University of Applied Sciences and Arts

Unvollstandige Auswahl groBer Softwaretechnik-Trends

Micro-

services

Model Driven
| Architecture J

Self-Contained

Systems
2005 (scs)

@etorienti%

!
Serviceorientierung \._.Computing

COY tvacan.oossst

Prozedurale
Komponenten-

Programmierung
108 orientierung Schichten-
5 (KBSE) architektur
Broker
Architecture |
(z.B. CORBA)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Abschlussbemerkung

University of Applied Sciences and Arts

Lohnt es sich einen Sportwagen zu kaufen, um damit morgens zum
300m entfernten Backer zu fahren?

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Architekturstile IlI

Microservice Architecture (MSA)
Self-contained Systems (SCS)

Fachhochschule
Dortmund

University of Applied Sciences and Arts

Architekturstile IlI M

