
© Prof. Dr. Sabine Sachweh

University of Applied Sciences and Arts Dortmund

Softwaretechnik 2
Persistente Datenhaltung II

SWT2 Persistierung

Platzhalter für ein Bild

7. Entwurfsmuster

8. Persistierung

8.1 Datenbanksysteme

8.2 Relationale Datenbanksysteme

8.3 Objektrelationale Abbildung

8.4 JPA

8.5 NoSQL

Struktur

© Prof. Dr. Sabine Sachweh

SWT2 Persistierung

Platzhalter für ein Bild

JPA

© Prof. Dr. Sabine Sachweh

Persistenzkontext

Persistenzeinheit
Datenbank

Java SE

SWT2 Persistierung

Platzhalter für ein Bild

JPA

© Prof. Dr. Sabine Sachweh

Java Persistence API (JPA)

§ ist eine im JSR 220 standardisierter objektrelationaler Mapper (OR-Mapper) für Java-basierte
Anwendungen

§ speichert Laufzeit-Objekte einer Java-Anwendung über eine einzelne Sitzung hinaus in einer
relationalen Datenbank

§ die API wurde im Mai 2006 erstmals veröffentlicht
§ innerhalb des javax.persistence Pakets definiert
§ TopLink Essentials war die Referenzimplementierung für JPA 1.0
§ EclipseLink ist die Referenzimplementierung für die JPA 2.0 / 2.1
§ weitere JPA-Implementierungen: Hibernate, Apache OpenJPA
§ seit 2019: Weiterentwicklung unter dem Namen Jakarta Persistence

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Persistent Entity

© Prof. Dr. Sabine Sachweh

§ Persistent Entities sind POJOs (Plain Old Java Objects)
• implementieren kein spezielles Interface à normale Java-Klasse mit Annotationen

import javax.persistence.*;

@Entity
public class Kunde{

@Id
private int id;
private String name;

public int getId() { return id; }
public void setId(int id) { this.id = id; }

public String getName() { return name; }
public void setName(String name) { this.name = name; }

}

Alternativ @Id
vor getter-
Methode
angeben!

Zukünftiger Paketname
jakarta.persistence

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Persistent Entity

© Prof. Dr. Sabine Sachweh

§ Im einfachsten Fall (mit Annotationen) benötigt ein Persistent Entity lediglich
• die Annotation @Entity,
• ein Feld bzw. Attribut, das durch die Annotation @Id als Primärschlüssel ausgewiesen wird und
• einen Default-Konstruktor, der zwingend erforderlich ist.

⇒ Paradigma: configuration by exception

§ Persistent Entity Klassen können überall verwendet werden und ihre Instanzen sogar zur Anzeige
an Clients verschickt werden, falls sie serialisierbar sind.

§ Neue Instanzen werden einfach mit new()-Operator erzeugt:

Kunde kunde = new Kunde();
kunde.setName("Mustermann");

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Persistent Entity

© Prof. Dr. Sabine Sachweh

§ Neue Instanzen bleiben solange “einfache Objekte“ bis der EntityManager das Objekt in der
relationalen Datenbank persistiert.
• pro Entity wird einer Datenbanktabelle angelegt

• jede Zeile repräsentiert eine konkrete Instanz einer Entity

§ Persistent Entities sind entweder managed oder sie sind unmanged.

• wenn sie managed sind, dann sind sie einem EntityManager zugeordnet (attached) und dieser synchronisiert
Zustandsänderungen mit der Datenbank

oder

• sie sind unmanaged, dann sind sie NICHT einem EntityManger zugeordnet (detached) und die Änderungen werden NICHT mit
der Datenbank synchronisiert.

§ Bei fehlenden Angaben trifft der EntityManager Standardannahmen:
• Tabellenname = Klassenname der Persistent Entities

(à kann mit @Table(name=“xyz“) geändert werden)
• Spaltenname = Attributname (à kann mit @Column(name=“xyz“) geändert werden)

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Zustandsmodell

© Prof. Dr. Sabine Sachweh

New

Managed

@PrePersist
@PostPersist
@PreRemove
@PostRemove
@PreUpdate
@PostUpdate
@PostLoad

refresh()

Detached

Removed

merge()

persist()
merge()

persist()

remove()

commit

rollback

rollback

commit/
rollback

find()/Query

Callback-Methoden:

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Persistent Entity Annotationen

© Prof. Dr. Sabine Sachweh

@Entity(name=“JP-QL-name“)
§ Deklariert Java-Klasse als Entity Klasse, d.h. Objekte dieser Klasse werden in der Datebank gespeichert

§ Optional kann ein Name festgelegt werden, unter dem die Klasse in JP-QL angesprochen werden kann. Defaultmäßig wird
der Klassenbezeichner gewählt.

@Id
§ Identifiziert den eindeutigen Schlüsselwert (Primärschlüssel)
§ Entweder an Attribut oder Methode verwenden

@GeneratedValue(value)
§ Automatische Generierung einer ID
§ Muss zusammen mit @ID verwendet werden

@Temporal(value)

§ Mapping von java.util.Date oder java.util.Calendar auf Datenbanktyp: Date, Time oder Timestamp

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Persistent Entity Annotationen

© Prof. Dr. Sabine Sachweh

@Enumerated(value)

§ Enumerations können persistent sein
In der Datenbank wird entweder der Ordinalwert (Position beginnend bei 0) oder der Stringwert (Name der Konstante)
abgelegt

§ Default für die Datenbankablage ist ORDINAL. Der Datentyp in der Datenbank kann varchar oder int sein. varchar ist sowohl
für den Stringwert wie für die Zahl geeignet

public enum Status { NEU, NORMAL, VIP }

@Entity
public class Kunde{

@Enumerated(EnumType.ORDINAL)
public Status getStatus() {return status};
// oder
@Enumerated(EnumType.STRING)
public Status getStatus() {return status};

}

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Entity Manager

© Prof. Dr. Sabine Sachweh

§ Der Entity Manager realisiert die Schnittstelle zur Datenbank
• OR-Mapping (Objekte finden, persistieren, entfernen …)
• Verwaltung der Entities

import javax.persistence.*;
import entities.Kunde;

public class Main{
EntityManagerFactory emf;

public static void main(String[] args)
{
(new Main()).test();

}

void test(){…}

public <T> void createEntity(T entity) {…}
public <T> T readEntity(Class<T> clss, Object id) {…}

}

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Entity Manager

© Prof. Dr. Sabine Sachweh

§ Kunde mit Hilfe des Entity Managers persistieren (1/2):

void test(){
emf = Persistence.createEntityManagerFactory("MeineJpaPU");

try {

Kunde kunde = new Kunde();
kunde.setName(”Max Mustermann");

createEntity(kunde); // ausgelagerte Methode
Object id = kunde.getId();

System.out.println("\n--- " + readEntity(Kunde.class, id)
+ " ---\n");

} finally {
emf.close();

}
}

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Entity Manager

© Prof. Dr. Sabine Sachweh

§ Kunde mit Hilfe des Entity Managers persistieren (2/2):

public <T> void createEntity(T entity){

EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();

try {
tx.begin();
em.persist(entity);
tx.commit();

} catch(RuntimeException ex) {
if(tx != null && tx.isActive()) tx.rollback();
throw ex;

} finally {
em.close();

}
}

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Entity Manager

© Prof. Dr. Sabine Sachweh

§ Entity auf Basis der id beim Entity Manager anfragen:

public <T> T readEntity(Class<T> clss, Object id){

EntityManager em = emf.createEntityManager();

try {
return em.find(class, id);

} finally {
em.close();

}
}

SWT2 Persistierung

Platzhalter für ein Bild

JPA
Java Persistence Query Language (JPQL)

© Prof. Dr. Sabine Sachweh

Java Persistence Query Language (JPQL)
§ Objektorientierte Abfragesprache als Teil der JPA
§ Alternative zum Entity Manager für komplexere Abfragen
§ Syntax ist an SQL angelehnt:

public <T> T readEntity(Class<T> clss, Object id){

EntityManager em = emf.createEntityManager();

try {
Query query = em.createQuery("SELECT k.name FROM Kunde k");
List<String> result = query.getResultList();
} finally {

em.close();
}

}

SWT2 Persistierung

Platzhalter für ein Bild

7. Entwurfsmuster

8. Persistierung

8.1 Datenbanksysteme

8.2 Relationale Datenbanksysteme

8.3 Objektrelationale Abbildung

8.4 JPA

8.5 NoSQL

Struktur

© Prof. Dr. Sabine Sachweh

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Bezeichnung für Datenbanken, die keinen relationalen Ansatz verfolgen und auf
festgelegte Tabellenschemata verzichten à Alternative zur SQL-Welt

§ NoSQL-Paradigma geht auf ein von Oskarsson und Evans angekündigtes Treffen im
Jahr 2009 unter dem Motto „NoSQL: open source, distributed, and non-relational
databases“ zurück

§ Grund: Unzufriedenheit über die Limitierungen von traditionellen
relationalen Datenbanken im Hinblick auf die effiziente Verarbeitung
von großen und unstrukturierten Datensätzen

§ Big Data lassen relationale Datenbanken an ihre Grenzen stoßen
• Datenvolumen, -vielfalt und –geschwindigkeit nehmen immer mehr zu

• IoT, Web 2.0, Industrie 4.0, Mobile Computing …
https://gi.de/informatiklexikon/big-data

Not only SQL (NoSQL)

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ BASE-Modell (Basically Available, Soft state, Eventual consistency) à ACID
• weitestgehender Verzicht auf Transaktionen

§ NoSQL Datenbanken zielen auf die performante und flexible Verarbeitung
• strukturierter (z.B. Datenbanken, Formular, Kundenstamm),

• semi-strukturierter (z.B. Email, HTML, JSON, XML) und
• unstrukturierter (Bilder, Videos, Text) Datensätze ab

§ Horizontale Skalierbarkeit und hohe Ausfallsicherheit auf Basis
verteilter Datenbanken gegeben (Sharding and Replication)

§ Zunehmende Nutzung von In-Memory-Datenbanken

§ Viele Open Source Varianten verfügbar

Eigenschaften

https://gi.de/informatiklexikon/big-data

Vertikale Skalierbarkeit Horizontale Skalierbarkeit

mehr RAM
mehr Speicher
mehr CPU

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Verzicht auf Schemarestriktionen

§ Stattdessen kommen unterschiedliche Datenmodelle zum Einsatz
• Wertepaare, Dokumente, Graphen, Zeitreihen, etc.

• Jede Art ist für einen gewissen Zweck optimiert und hat Vor- und Nachteile

§ Objektbasierte APIs für viele Programmiersprachen (z.B. Java, Python, C, etc.)

§ Abwägen welche NoSQL-Datenbank für einen Anwendungsfall am besten geeignet
ist
• Keine Datenmodell liefert eine „one fits all“ Lösung

• Welche Daten liegen vor und wie werden diese in der Anwendung genutzt?

• Generell eignen sich NoSQL-Datenbanken für verteilte und hochskalierbare Anwendungen mit hohem
Durchsatz und geringer Latenz

Datenorganisation

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

Relationale vs. NoSQL Datenbanken

Relationale Datenbank NoSQL Datenbank

Lizenzmodell Meistens Kommerziell Meistens Open Source

Datenmodell Vordefiniertes Tabellenschema mit
Zeilen und Spalten

Schemafrei, viele Varianten verfügbar (Key-
Value, Dokument, Graph, etc.)

Flexibilität Klare und strikte Datenstrukturen Flexibel erweiterbar um neue Datentypen

Skalierbarkeit Vertikal Skalierbar Horizontal Skalierbar

Performanz Abhängig von der Hardware
(Single Host), Tabellenstruktur und
Effizienz der Algorithmen

Abhängig von der Größe des
Hardwareclusters, Netzwerkbandbreiten und
dem verwendeten Datenmodell

APIs SQL Objektbasierte APIs

ACID ACID Eigenschaften werden
komplett umgesetzt

Nur teilweise umgesetzt (BASE Modell)

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

Auswahlprozess

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, Norbert Ritter: NoSQL database
systems: a survey and decision guidance. Comput. Sci. Res. Dev. 32(3-4): 353-365
(2017)

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Übersicht über NoSQL Datenbanken: https://hostingdata.co.uk/nosql-database/

§ Heterogene Menge mit unterschiedlichen Architekturen und Datenmodellen:

Heterogene Landschaft

https://hostingdata.co.uk/nosql-database/

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

Trends

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Einfachste Variante einer NoSQL-Datenbank und vergleichbar mit einem Wörterbuch

§ Werte (Value) werden über einen eindeutigen Schlüssel (Key) identifiziert
• Beliebiges Datenformat für einen Schlüssel und Wert möglich, z.B. String, Integer, Listen, Bilder, Code, etc.

§ Speicherung via In-Memory-Datenbank oder On-Disk-Lösung

§ Vorteile
• schnelle Schreib- und Lesegeschwindigkeit bei einfachen Datensätzen

• hohe Skalierbarkeit

• größtmögliche Freiheit bei der Datenstruktur

§ Nachteile
• sehr eingeschränkte Datenbankoperationen (GET, PUT, DELETE) und Abfragemöglichkeiten

§ Anwendungsbeispiele: UNIX, Warenkorb in einem Online-Shop, Userprofile, IP Tabellen, Sessions,
Caching

Key-Value Datenbank

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Beispiel Onlineshop:

§ Beispiel Musikstreaming:

Key-Value Datenbank

Schlüssel Wert

kunde:00001:name Jens Mustermann

kunde:00001:artikel [12, 332, 16231]

kunde:00045:artikel {50, 441, 0222}

artikel:00001:farben {rot, gelb, grün}

Welche Datentypen für
einen Wert unterstützt
werden, hängt von der
jeweiligen Datenbank

ab

Schlüssel Wert

künstler:1:name AC/DC

künstler:1:gerne Hard Rock

künstler:2:name Elvis

künstler:2:gerne Rock 'n' Roll

Die Wahl des Schlüssels sollte
gut überlegt sein und für den
jeweiligen Anwendungsfall hin

definiert sein

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Spezielle Variante des Key-Value-Datenmodells

§ Speicherung von Daten in dokumentenähnlichen Strukturen

§ Dokumente enthalten semi-strukturierte Daten und werden über einen eindeutigen Schlüssel identifiziert
• Jedes Dokument kann einen eigenen Strukturaufbau verfolgen, z.B. XML-, YAML-, JSON- oder BSON

• Metadaten werden durch Datenbank-Engine zur Optimierung extrahiert

§ Vorteile
• hohe Flexibilität bei sich häufig ändernden Daten

• Dokumente repräsentieren Objekte

• umfangreiche Query-Möglichkeiten

§ Nachteile
• Abfragemöglichkeiten bei komplexen Datenbeziehungen

§ Anwendungsbeispiele: CMS, Webapplikationen im Allgemeinen

Dokumentenorientierte Datenbank

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Beispiel Onlineshop:

Dokumentenorientierte Datenbank

Schlüssel Dokument

1156sd13fgdaal {
"_ID": "1",
"Name": "Jens Mustermann"

}

43ajzddsfdsf34 {
"_ID": "2",
"Name": "Klaus Dachpfanne",
"Email": "Klaus@fh-dortmund.de"

}

5gg990fnsfinas <kunde>
<id>5</>
<name>Agathe Bauer</name>

</kunde>

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Darstellung von Beziehungen ist eine große Schwachstelle bei relationalen Datenbanken

§ Speicherung von Daten in Graph-Strukturen um stark vernetze Informationen abzubilden
• Knoten repräsentieren Entitäten und sind über einen eindeutigen Bezeichner identifizierbar

• Kanten stellen die Relation zwischen Knoten dar und können mittels Attributen gewichtet werden

§ Vorteile
• Graphenmodell ist optimiert für das Speichern und Auffinden von Beziehungen zwischen Daten

• Nutzung von Graphalgorithmen für komplexe Abfragen

• Abfragegeschwindigkeit unabhängig von der Gesamtmenge der Daten

§ Nachteile
• schlecht skalierbar

• keine einheitliche Abfragesprache

§ Anwendungsbeispiele: Soziale Netzwerke, Logistik, Empfehlungsanwendungen, Semantic Web

Graphdatenbank

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Beispiel Onlineshop:

Graphdatenbank

Artikel:
Wasserpistole

Farbe:
Rot

Kunde:
Jens Mustermann

Wohnort:
Dortmund

hat_bestelltMenge: 3

Attributierte Kanten
beschreiben die

Beziehungen zwischen
Knoten

Kunde:
Anna Baum

Wohnort:
Duisburg

hat_vorge
merkt

Menge: 1

Knoten mit
Attributen

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Konzeptionell die größte Ähnlichkeit zu relationalen Datenbanken

§ Zweidimensionale Key-Value Datenbank bei der Daten spaltenweise anstatt zeilenweise
gespeichert werden
• Datenbank ist in unterschiedliche Spaltenfamilien aufgeteilt, die wiederum eine Sammlung von Zeilen aggregieren

• Jede Zeile verfügt über eine beliebige Anzahl an Spalten und wird über einen eindeutigen Zeilenschlüssel identifiziert

• Jede Spalte setzt sich aus einen Key-Value Paar und Zeitstempel zusammen, wobei sich der Spaltenaufbau zeilenweise
unterscheiden kann

§ Vorteile
• sehr performant bei Aggregationen (z.B. SUM, AVG, COUNT) auf großen Datenbeständen

• geeignet für Analysen von umfangreichen und strukturierten Daten

• auf verteilte Systeme ausgelegt durch gute Komprimierungs- und Partitionierungseigenschaften

§ Nachteile
• nicht optimal für transaktionale Anwendungen (INSERT, UPDATE)

§ Anwendungsbeispiele: Data Mining, Data Warehouse/OLAP (Online Analytical Processing),
Reporting

Spaltenorientierte Datenbank (Wide Column
Stores)

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Beispiel Onlineshop:

Agathe

Name PLZ Alter

Agathe Bauer 44137 35

1588691763349 2588691243342 1288691764340

Jens

Email PLZ Alter

Jens@nosql.co
m

32842 54

3438691763339 1386691543301 1428691764321

Artikelstamm

SpaltenfamilieAgathe

Name PLZ Alter

Agathe Bauer 44137 35

1588691763349 2588691243342 1288691764340

Jens

Email PLZ Alter

Jens@nosql.co
m

32842 54

3438691763339 1386691543301 1428691764324

Frank

Kundennumme
r

Land

AH6353 DE

7434693763339 0416631543471

Kundenstamm

Eindeutiger
Zeilenschlüsse

l

Zeitstempel
Key-Value-

Paar

Zeile in einer
Spaltenfamilie

Spalte in einer
ZeileSpaltenorientierte Datenbank (Wide Column

Stores)

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Datenmodell ist auf das Speichern und die Analyse von Zeitreihen ausgelegt
• Fokus liegt auf dem Hinzufügen (INSERT) von Daten und nicht deren nachträgliche Modifikation (UPDATE)

• Analysen von Veränderungen in Daten über eine gewisse Zeitspanne

§ Jede Zeitreihe enthält einen Zeitstempel und eine Reihe von assoziierten Werten
(Messreihendaten)

§ Vorteile
• Umfangreiche Aggregationen über viele Datensätze sind sehr effizient und Anfragen können in Echtzeit bedient werden

• Komprimierung über Zeitintervalle möglich

• Auffinden von Trends oder Anomalien in Datensätzen

§ Nachteile
• Nur für Anwendungsfälle mit Bezug zu Zeitreihen ausgelegt

§ Anwendungsbeispiele: Industrie 4.0 (Maschinendaten), Connected Vehicles (Telemetriedaten),
Smart Home, Wetterdaten, Börsenkurse

Zeitreihen Datenbank

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Beispiel aus dem Forschungsprojekt APPSTACLE (Connected Vehicles):
Speicherung von Telemetriedaten in einer InfluxDB

Zeitreihen Datenbank

https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector

Direkte Visualisierung der
Werte als Diagramme mittels

des Frameworks Grafana
möglich

Zeitstempel Infrarot Ultraschall Drehzah
l

…

1588691763349 112 23 113

1588691789971 111 43 113

Ausschließliche Nutzung von
numerischen Werten für eine spätere

Visualisierung

https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

Zeitreihen Datenbank

https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector

https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Polyglotte Persistenz: Einsatz verschiedener Datenbanken für verschiedene Anforderungen an
die Datenspeicherung in komplexeren Anwendungen

• erlaubt unterschiedliche Sichtweisen auf die gespeicherten Daten

§ Multi-Modell-Datenbanken vereinen unterschiedliche (NoSQL) Datenmodelle in einer
Datenbank
• Beispiel Mitarbeiterverwaltung:

o Graph zur Speicherung der Beziehungen zwischen Mitarbeitern und Abteilungen

o Knoten werden hingegen dokumentenbasiert gespeichert

§ NewSQL erweitert relationale Systeme um die Vorzüge von NoSQL (horizontale Skalierbarkeit)
• ACID Eigenschaften werden in Kombination mit einer Shared-Nothing-Architektur (unabhängige

Rechnerknoten, die über ein Netzwerk vernetzt sind) umgesetzt

• Optimiert für OLTP (Online-Transaction-Processing) Anwendungen

Polyglotte Datenbankkonzepte

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

§ Bei der Auswahl einer NoSQL-Datenbank besteht die Gefahr einer
Herstellerabhängigkeit (Vendor-Lock-in)
• Produkt wird nicht mehr weiterentwickelt, massive Änderungen an der API, neue Preismodelle, etc.

§ Die Jakarta NoSQL Spezifikation [1] hat sich zum Ziel gesetzt, die Integration von
Java-Anwendungen und NoSQL-Datenbanken zu vereinfachen

§ Schaffung einer einheitlichen Schnittstelle zu NoSQL-Datenbanken
• Hersteller- und Versionsunabhängige API zur Vermeidung von Vendor-Lock-ins

• Äquivalent zu JDBC und JPA für SQL

• Einfacher Wechsel zwischen verschiedenen Datenbanken mittels entsprechender Treiber

§ APIs für vier verschiedene NoSQL-Datenbanktypen: Key-Value,
Dokumentenorientiert, Graph, Spaltenorientiert

Einheitliche Datenbankschnittstelle

[1] https://projects.eclipse.org/proposals/jakarta-nosql

https://projects.eclipse.org/proposals/jakarta-nosql

SWT2 Persistierung

Platzhalter für ein Bild

NoSQL

© Prof. Dr. Sabine Sachweh

Event Sourcing

§ Event Sourcing [1] ist ein Persistenzmechanismus bei dem alle Änderungen in
einer Anwendung als Sequenz von Events gespeichert werden

§ Zeigt nicht nur den aktuellen Zustand einer Entität, sondern auch, wie dieser
Zustand entstanden ist
• Chronologischen Liste aller Änderungen (Domain Events)
• Erlaubt es einen beliebigen Zustand aus der Vergangenheit herzustellen

§ Beispiel Kontoführung: Kontostand (Zustand) ergibt sich aus den einzelnen
Änderungen (Buchungen)

§ Vermehrter Einsatz im Zuge von Domain-Driven Design / Microservice-
Bewegung

[1] https://microservices.io/patterns/data/event-sourcing.html

https://microservices.io/patterns/data/event-sourcing.html

SWT2 Persistierung

Platzhalter für ein Bild

Weitere Fragen

© Prof. Dr. Sabine Sachweh

