University of Applied Sciences and Arts Dortmund

Softwaretechnik 2
Persistente Datenhaltung Il

Fachhochschule
Dortmund

University of Applied Sciences and Arts © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Struktur

University of Applied Sciences and Arts

7. Entwurfsmuster

8. Persistierung

8.1 Datenbanksysteme

8.2 Relationale Datenbanksysteme
8.3 Objektrelationale Abbildung
8.4 JPA

8.5 NoSQL

SWT2 Persistierung

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Java SE

Persistenz-
kontext

Persistenzkontext

i = Entity-Manager &

ANNEnnsnnnnnnn®

Persistenzeinheit

Persistenzeinheit

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Java Persistence API (JPA)

= ist eine im JSR 220 standardisierter objektrelationaler Mapper (OR-Mapper) fur Java-basierte
Anwendungen

= speichert Laufzeit-Objekte einer Java-Anwendung Uber eine einzelne Sitzung hinaus in einer
relationalen Datenbank

= die APl wurde im Mai 2006 erstmals veroffentlicht

= innerhalb des javax.persistence Pakets definiert

= TopLink Essentials war die Referenzimplementierung fir JPA 1.0

= Eclipselink ist die Referenzimplementierung fur die JPA 2.0/ 2.1

= weitere JPA-Implementierungen: Hibernate, Apache OpenJPA

= seit 2019: Weiterentwicklung unter dem Namen Jakarta Persistence

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

= Persistent Entities sind POJOs (Plain Old Java Objects)

 implementieren kein spezielles Interface = normale Java-Klasse mit Annotationen

JPA
Persistent Entity

import javax.persistence.*;

@Entity
public class Kunde{

@Id
private int id;
private String name;

Zukunftiger Paketname
jakarta.persistence

public int getId() { return id; }

public void setId(int id)

{ this.id = id; }

public String getName () { return name; }
public void setName (String name) { this.name =

Alternativ @1d
vor getter-
Methode
angeben!

name;

}

SWT2 Persistierung

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Persistent Entity

= Im einfachsten Fall (mit Annotationen) bendtigt ein Persistent Entity lediglich

« die Annotation GEntity,
+ ein Feld bzw. Attribut, das durch die Annotation @Id als Primarschlissel ausgewiesen wird und

 einen Default-Konstruktor, der zwingend erforderlich ist.

= Paradigma: configuration by exception

= Persistent Entity Klassen konnen tberall verwendet werden und ihre Instanzen sogar zur Anzeige
an Clients verschickt werden, falls sie serialisierbar sind.

= Neue Instanzen werden einfach mit new()-Operator erzeugt:

Kunde kunde = new Kunde() ;
kunde. setName ("Mustermann") ;

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Persistent Entity

= Neue Instanzen bleiben solange “einfache Objekte” bis der EntityManager das Objekt in der
relationalen Datenbank persistiert.

* pro Entity wird einer Datenbanktabelle angelegt

+ jede Zeile reprasentiert eine konkrete Instanz einer Entity
= Persistent Entities sind entweder managed oder sie sind unmanged.

* wenn sie managed sind, dann sind sie einem EntityManager zugeordnet (attached) und dieser synchronisiert
Zustandsanderungen mit der Datenbank
oder

« sie sind unmanaged, dann sind sie NICHT einem EntityManger zugeordnet (detached) und die Anderungen werden NICHT mit
der Datenbank synchronisiert.

= Bei fehlenden Angaben trifft der EntityManager Standardannahmen:

« Tabellenname = Klassenname der Persistent Entities
(= kann mit @Table(name="xyz") gedndert werden)

* Spaltenname = Attributname (> kann mit @Column(name="xyz") geandert werden)

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Removed

Dortmund JPA
University of Applied Sciences and Arts
Zustandsmodell
New
y
persist() commit
rollback
find merge ()
. persist()
Managed) ‘
refresh () 4 remove ()
commit/ merge ()
rollback rollback
A
Detached

SWT2 Persistierung

Callback-Methoden:

@PrePersist
@QPostPersist
@PreRemove
@PostRemove
@PreUpdate
@PostUpdate
@PostlLoad

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Persistent Entity Annotationen

@Entity (name="“"JP-QL-name")
= Deklariert Java-Klasse als Entity Klasse, d.h. Objekte dieser Klasse werden in der Datebank gespeichert

= Optional kann ein Name festgelegt werden, unter dem die Klasse in JP-QL angesprochen werden kann. Defaultmafiig wird
der Klassenbezeichner gewahlt.

@Id
= |dentifiziert den eindeutigen Schlisselwert (Primarschlissel)
* Entweder an Attribut oder Methode verwenden

@GeneratedValue (value)
= Automatische Generierung einer ID
* Muss zusammen mit @ID verwendet werden

@Temporal (value)

= Mapping von java.util.Date oder java.util.Calendar auf Datenbanktyp: Date, Time oder Timestamp

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Persistent Entity Annotationen

@Enumerated (value)

= Enumerations konnen persistent sein
In der Datenbank wird entweder der Ordinalwert (Position beginnend bei 0) oder der Stringwert (Name der Konstante)

abgelegt

= Default fir die Datenbankablage ist ORDINAL. Der Datentyp in der Datenbank kann varchar oder int sein. varchar ist sowohl
flr den Stringwert wie fir die Zahl geeignet

public enum Status { NEU, NORMAL, VIP }

@Entity
public class Kunde({
@Enumerated (EnumType.ORDINAL)
public Status getStatus() {return status};
// oder
@Enumerated (EnumType.STRING)
public Status getStatus() {return status};

} © Prof. Dr. Sabine Sachweh

SWT2 Persistierung

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Entity Manager

= Der Entity Manager realisiert die Schnittstelle zur Datenbank
* OR-Mapping (Objekte finden, persistieren, entfernen ...)
* Verwaltung der Entities

import javax.persistence.*;
import entities.Kunde;

public class Main{
EntityManagerFactory emf;

public static void main(String[] args)

{

(new Main ()) .test ()

}
void test () {..}

public <T> void createEntity(T entity) {..}
public <T> T readEntity(Class<T> clss, Object id) {..}
SWT2 Persistierung } © Prof. Dr. Sabine Sachweh

we

focus
Fachhochschule on
ng[nsm:ﬂe?sgences and Arts J PA St U d e n tS

Entity Manager

= Kunde mit Hilfe des Entity Managers persistieren (1/2):

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

we

focus
Fachhochschule on
ng[nsm:ﬂe?sgences and Arts J PA St U d e n tS

Entity Manager

= Kunde mit Hilfe des Entity Managers persistieren (2/2):

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

we

focus
Fachhochschule on
ng[nfm:ﬂe?sgences and Arts J PA St U d e n tS

Entity Manager

= Entity auf Basis der id beim Entity Manager anfragen:

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund JPA

University of Applied Sciences and Arts

Java Persistence Query Language (JPQL)

Java Persistence Query Language (JPQL)
= Objektorientierte Abfragesprache als Teil der JPA

= Alternative zum Entity Manager flr komplexere Abfragen
= Syntax ist an SQL angelehnt:

public <T> T readEntity (Class<T> clss, Object id) {

EntityManager em = emf.createEntityManager () ;

try |

List<String> result = query.getResultList ()
} finally {

em.close () ;

}

SWT2 Persistierung

Query query = em.createQuery ("SELECT k.name FROM Kunde k") ;

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund Struktur

University of Applied Sciences and Arts

7. Entwurfsmuster

8. Persistierung

8.1 Datenbanksysteme

8.2 Relationale Datenbanksysteme
8.3 Objektrelationale Abbildung
8.4 JPA

8.5 NoSQL

SWT2 Persistierung

© Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL
Not only SQL (NoSQL)

= Bezeichnung fir Datenbanken, die keinen relationalen Ansatz verfolgen und auf
festgelegte Tabellenschemata verzichten - Alternative zur SQL-Welt

= NoSQL-Paradigma geht auf ein von Oskarsson und Evans angekiindigtes Treffen im
Jahr 2009 unter dem Motto ,, NoSQL: open source, distributed, and non-relational

databases” zurlick Data
Velocity "%,

= Grund: Unzufriedenheit Gber die Limitierungen von traditionellen &
relationalen Datenbanken im Hinblick auf die effiziente Verarbeitung

von groBBen und unstrukturierten Datensatzen o
= Big Data lassen relationale Datenbanken an ihre Grenzen stoBen 19 .. N
J3 ' Variety =

* Datenvolumen, -vielfalt und —geschwindigkeit nehmen immer mehr zu
https://gi.de/informatiklexikon/big-date

swived@l Web 2.0, Industrie 4.0, Mobile Computing ... © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Eigenschaften

= BASE-Modell (Basically Available, Soft state, Eventual consistency) = -AbkoHmlaona | semistctureavsta | unstructureavata
1 1 , N
+ weitestgehender Verzicht auf Transaktionen ! | S@L8Q
o | @ | oo o g
: . . oii I I
= NoSQL Datenbanken zielen auf die und Verarbeittiig 9 I
I from: :;): | a&[>’wiif‘
. . I CC: CcC: 1| People to machine:
strukturierter (z.B. Datenbanken, Formular, Kundenstamm), - e
* semi-strukturierter (z.B. Email, HTML, JSON, XML) und i - i o E>§
 unstrukturierter (Bilder, Videos, Text) Datensatze ab ! Sttd"u—t‘t\%‘: Maching to machine:
| Data Data | [Lcameras, scientificresearch, 7
- und hohe auf Bas|3 https://gi.de/informatiklexikon/big-dat:
gegeben (Sharding and Replication)
- & &
= Zunehmende Nutzung von In-Memory-Datenbanken - mehr RAM ————
- mehr Speiche - »
mehr CPU - —
= Viele Open Source Varianten verfugbar — —
Vertikale Skalierbarkeit Horizontale Skalierbarke

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Datenorganisation

= Verzicht auf Schemarestriktionen

= Stattdessen kommen unterschiedliche Datenmodelle zum Einsatz

=
|33
< ||<]|=<
& < < <
o
3 e c =
@) ® @

* Wertepaare, Dokumente, Graphen, Zeitreihen, etc.

 Jede Art ist fur einen gewissen Zweck optimiert und hat Vor- und Nachteile i

= Objektbasierte APIs fir viele Programmiersprachen (z.B. Java, Python, C, etc.)

:

= Abwagen welche NoSQL-Datenbank fir einen Anwendungsfall am besten geeignet
st

 Keine Datenmodell liefert eine ,,one fits all” Losung

« Welche Daten liegen vor und wie werden diese in der Anwendung genutzt?

 Generell eignen sich NoSQL-Datenbanken fur verteilte und hochskalierbare Anwendungen mit hohem
Durchsatz und geringer Latenz

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

NoSQL

Relationale vs. NoSQL Datenbanken

_ Relationale Datenbank NoSQL Datenbank

Lizenzmodell

Datenmodell

Flexibilitat
Skalierbarkeit

Performanz

APls
ACID

SWT2 Persistierung

Meistens Kommerziell

Vordefiniertes Tabellenschema mit
Zeilen und Spalten

Klare und strikte Datenstrukturen

Vertikal Skalierbar

Abhangig von der Hardware
(Single Host), Tabellenstruktur und
Effizienz der Algorithmen

SQL

ACID Eigenschaften werden
komplett umgesetzt

Meistens Open Source

Schemafrei, viele Varianten verfligbar (Key-
Value, Dokument, Graph, etc.)

Flexibel erweiterbar um neue Datentypen
Horizontal Skalierbar

Abhangig von der GroBe des
Hardwareclusters, Netzwerkbandbreiten und
dem verwendeten Datenmodell

Objektbasierte APls
Nur teilweise umgesetzt (BASE Modell)

© Prof. Dr. Sabine Sachweh

Fachhochschule
Dortmund

University of Applied Sciences and Arts

NoSQL

Auswahlprozess

| Access [

Fast Lookups Complex Queries

RAM Unbounded HDD-Size Unbounded
’—‘—’ Query Pattern
AP CP ACID Availability Ad-hoc Analytics
Redis Cassandra HBase RDBMS CouchDB MongoDB Hadoop, Spark
Memcache Riak MongoDB Neo4j MongoDB RethinkDB Parallel DWH
Voldemort CouchBase RavenDB SimpleDB HBase,Accumulo Cassandra, HBase
Aerospike DynamoDB MarkLogic ElasticSeach, Solr Riak, MongoDB
— e e] —— —
aske istory etwor

Example Applications

SWT2 Persistierung

Felix Gessert, Wolfram Wingerath, Steffen Friedrich, Norbert Ritter: NoSQL database
systems: a survey and decision guidance. Comput. Sci. Res. Dev. 32(3-4): 353-365
(2017)

© Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Heterogene Landschaft

= Ubersicht (iber NoSQL Datenbanken: https://hostingdata.co.uk/nosqgl-database/

= Heterogene Menge mit unterschiedlichen Architekturen und Datenmodellen:

Wide Column Stores: 10 Content Stores: 2

Time Series DBMS: 33 Document Stores: 47

Suchmaschinen: 21 Event Stores: 3

Graph DBMS: 32
Key-Value Stores: 63
Multivalue DBMS: 10

Relational DBMS: 142 Native XML DBMS: 7

Object oriented DBMS: 21

\

RDF Stores: 19

SWT2 Persistierung © 2020, DB-Engines.com © Prof. Dr. Sabine Sachweh

https://hostingdata.co.uk/nosql-database/

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Trends

1200
1000
- — Graph DBMS
f*g = Document Stores
L; — Time Series DBMS
g — Key-Value Stores
g 600 Suchmaschinen
g — Wide Column Stores
= — RDF Stores
g ~ — Native XML DBMS
< 400 —— Object oriented DBMS
—— Multivalue DBMS
- Relational DBMS
200
0
2013 2014 2015 2016 2017 2018 2019 2020

© 2020, DB-Engines.com

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Key-Value Datenbank

key value

i

ey value

key value

Einfachste Variante einer NoSQL-Datenbank und vergleichbar mit einem Worterbuch

value

Werte (Value) werden Uber einen eindeutigen Schlissel (Key) identifiziert

+ Beliebiges Datenformat fir einen Schlissel und Wert moglich, z.B. String, Integer, Listen, Bilder, Code, etc.

Speicherung via In-Memory-Datenbank oder On-Disk-Losung

Vorteile
+ schnelle Schreib- und Lesegeschwindigkeit bei einfachen Datensatzen
* hohe Skalierbarkeit
« gréBtmaogliche Freiheit bei der Datenstruktur

Nachteile
+ sehr eingeschrankte Datenbankoperationen (GET, PUT, DELETE) und Abfragemdoglichkeiten

énwhe_ndungsbeispiele: UNIX, Warenkorb in einem Online-Shop, Userprofile, IP Tabellen, Sessions,
aching

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Key-Value Datenbank

spiel Onlinesh
" Delspiel Dnineshop’ e
kunde:00001:name Jens Mustermann X
kunde:00001 :artikel [12, 332, 16231] Welche Datentypen fiir
einen Wert unterstltzt
kunde:00045:artikel {50, 441, 0222} werden, hangt von der
.) jeweiligen Datenbank
artikel:00001:farben {rot, gelb, griin} ab
- BeiSpiel Musikstreaming: _
Schlissel Wert
/ kinstler:1:name AC/DC
Die Wahl des Schlussels sollte T — Hard Rock

gut Uberlegt sein und fir den
jeweiligen Anwendungsfall hin kinstler:2:name Elvis
definiert sein

kinstler:2:gerne Rock 'n' Roll

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Dokumentenorientierte Datenbank

Spezielle Variante des Key-Value-Datenmodells

Speicherung von Daten in dokumentenahnlichen Strukturen

Dokumente enthalten semi-strukturierte Daten und werden Uber einen eindeutigen Schlissel identifiziert
Jedes Dokument kann einen eigenen Strukturaufbau verfolgen, z.B. XML-, YAML-, JSON- oder BSON

Metadaten werden durch Datenbank-Engine zur Optimierung extrahiert

Vorteile
hohe Flexibilitat bei sich haufig &ndernden Daten
Dokumente reprasentieren Objekte

umfangreiche Query-Maoglichkeiten

Nachteile

Abfragemdglichkeiten bei komplexen Datenbeziehungen

Anwendungsbeispiele: CMS, Webapplikationen im Allgemeinen

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Dokumentenorientierte Datenbank

= Beispiel Onlineshop:

1156sd13fgdaal {
II_|DII: |I1II,
“Name": "Jens Mustermann"
}
43ajzddsfdsf34 {
II_|DII: ||2II,
"Name": "Klaus Dachpfanne",
"Email": "Klaus@fh-dortmund.de"
}
5gg990fnsfinas <kunde>
<id>5</>
<name>Agathe Bauer</name>
</kunde>

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Graphdatenbank

Darstellung von Beziehungen ist eine grof3e Schwachstelle bei relationalen Datenbanken

Speicherung von Daten in Graph-Strukturen um stark vernetze Informationen abzubilden
+ Knoten reprasentieren Entitaten und sind Uber einen eindeutigen Bezeichner identifizierbar

+ Kanten stellen die Relation zwischen Knoten dar und kénnen mittels Attributen gewichtet werden

Vorteile
* Graphenmodell ist optimiert fir das Speichern und Auffinden von Beziehungen zwischen Daten
* Nutzung von Graphalgorithmen fir komplexe Abfragen

* Abfragegeschwindigkeit unabhangig von der Gesamtmenge der Daten

Nachteile

« schlecht skalierbar

* keine einheitliche Abfragesprache

Anwendungsbeispiele: Soziale Netzwerke, Logistik, Empfehlungsanwendungen, Semantic Web

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund

University of Applied Sciences and Arts

NoSQL
Graphdatenbank

= Beispiel Onlineshop:

SWT2 Persistierung

Knoten mit
Attributen

Kunde:

Jens Mustermann hat_bestell
Me t
Nge: 3
Wohnort:
Dortmund —
hat vorgemerkt
Menge:
Kunde:

Attributierte Kanten
beschreiben die
Beziehungen zwischen
Knoten

Artikel:

Wasserpistole

Farbe:
Rot

Anna Baum

Wohnort:
Duisburg

© Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Spaltenorientierte Datenbank (Wide Column
Stores)

Konzeptionell die gréBte Ahnlichkeit zu relationalen Datenbanken

Zweidimensionale Key-Value Datenbank bei der Daten spaltenweise anstatt zeilenweise
gespeichert werden

+ Datenbank ist in unterschiedliche Spaltenfamilien aufgeteilt, die wiederum eine Sammlung von Zeilen aggregieren
+ Jede Zeile verfugt Uber eine beliebige Anzahl an Spalten und wird Uber einen eindeutigen Zeilenschlussel identifiziert

+ Jede Spalte setzt sich aus einen Key-Value Paar und Zeitstempel zusammen, wobei sich der Spaltenaufbau zeilenweise
unterscheiden kann

Vorteile
+ sehr performant bei Aggregationen (z.B. SUM, AVG, COUNT) auf gro3en Datenbestanden

+ geeignet fur Analysen von umfangreichen und strukturierten Daten

+ auf verteilte Systeme ausgelegt durch gute Komprimierungs- und Partitionierungseigenschaften

Nachteile
* nicht optimal flr transaktionale Anwendungen (INSERT, UPDATE)

@g%véwdungsbelsplele Data Mining, Data Warehouse/OLAP (Online Analytical Processing), .. .

in

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Spalte in einer
Zeile

Spaltenorientierte Datenbank (Wide Column

Stores)
/ Artikelstamm /
= Beispiel Onlineshop: / Kundenstamm

Zeile in einer

Spaltenfamilie —

Spaltenfamilie

35

A\eE1al= | Agathe Bauer 44137

=

0

1588691763349 2588691243342 1288691764340

54

Jens@nosqgl.co 32842
m

Eindeutiger /

ZeilenschlUsse
I

D 3438691763339 1386691543301 1428691764324 P
Zeitstempel (Kundennumme | Land N
Key-Value-

Paar

AH6353 DE

7434693763339 0416631543471
SWT2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Zeitreihen Datenbank

Datenmodell ist auf das Speichern und die Analyse von Zeitreihen ausgelegt
+ Fokus liegt auf dem Hinzufligen (INSERT) von Daten und nicht deren nachtragliche Modifikation (UPDATE)

* Analysen von Veranderungen in Daten Uber eine gewisse Zeitspanne

Jede Zeitreihe enthalt einen Zeitstempel und eine Reihe von assoziierten Werten
(Messreihendaten)

Vorteile
+ Umfangreiche Aggregationen Uber viele Datensatze sind sehr effizient und Anfragen kénnen in Echtzeit bedient werden
+ Komprimierung Uber Zeitintervalle moglich

« Auffinden von Trends oder Anomalien in Datensatzen

Nachteile

* Nur fir Anwendungsfalle mit Bezug zu Zeitreihen ausgelegt

Anwendungsbeispiele: Industrie 4.0 (Maschinendaten), Connected Vehicles (Telemetriedaten),
Smart Home, Wetterdaten, Borsenkurse

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Zeitreihen Datenbank

@

= Beispiel aus dem Forschungsprojekt APPSTACLE (Connected Vehicles):
Speicherung von Telemetriedaten in einer InfluxDB

1588691763349 112 23 113
1588691789971 111 43 113

AusschlieBliche Nutzung von
numerischen Werten flr eine spatere
Visualisierung

Direkte Visualisierung der

Werte als Diagramme mittels » ull{.vll‘lll\llll..lHu\nlIHMHHIH‘HMHHHHHJll\.HIHMHIHlllhlnHHhHlHHWI\H.H\||H||.H\|\H'H\|.MlH|||||.|u.|\m\|Hlill\mH.H!HH\‘lH.IHHHHHVHHHHW!I

des Frameworks Grafana
maoglich

© Prof. Dr. Sabine Sachweh

SWT2 Persistierung

https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Zeitreihen Datenbank

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

https://github.com/eclipse/kuksa.cloud/tree/master/utils/hono-influxdb-connector

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Polyglotte Datenbankkonzepte

- : Einsatz verschiedener Datenbanken fur verschiedene Anforderungen an
die Datenspeicherung in komplexeren Anwendungen

« erlaubt unterschiedliche Sichtweisen auf die gespeicherten Daten

. vereinen unterschiedliche (NoSQL) Datenmodelle in einer
Datenbank

* Beispiel Mitarbeiterverwaltung:
o Graph zur Speicherung der Beziehungen zwischen Mitarbeitern und Abteilungen

o Knoten werden hingegen dokumentenbasiert gespeichert
2 erweitert relationale Systeme um die Vorztige von NoSQL (horizontale Skalierbarkeit)

« ACID Eigenschaften werden in Kombination mit einer Shared-Nothing-Architektur (unabhangige
Rechnerknoten, die Uber ein Netzwerk vernetzt sind) umgesetzt

+ Optimiert fir OLTP (Online-Transaction-Processing) Anwendungen

SWT?2 Persistierung © Prof. Dr. Sabine Sachweh

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts
Einheitliche Datenbankschnittstelle

= Bei der Auswahl einer NoSQL-Datenbank besteht die Gefahr einer
Herstellerabhangigkeit (Vendor-Lock-in)

* Produkt wird nicht mehr weiterentwickelt, massive Anderungen an der API, neue Preismodelle, etc.
= Die Jakarta NoSQL Spezifikation [1] hat sich zum Ziel gesetzt, die Integration von
Java-Anwendungen und NoSQL-Datenbanken zu vereinfachen
= Schaffung einer einheitlichen Schnittstelle zu NoSQL-Datenbanken
* Hersteller- und Versionsunabhangige API zur Vermeidung von Vendor-Lock-ins

» Aquivalent zu JDBC und JPA fiir SQL
* Einfacher Wechsel zwischen verschiedenen Datenbanken mittels entsprechender Treiber

= APIs fur vier verschiedene NoSQL-Datenbanktypen: Key-Value,
Dokumentenorientiert, Graph, Spaltenorientiert

[1] https://projects.eclipse.org/proposals/jakarta-nosq|
© Prof. Dr. Sabine Sachweh

SWT2 Persistierung

https://projects.eclipse.org/proposals/jakarta-nosql

Fachhochschule

Dortmund NoSQL

University of Applied Sciences and Arts

Event Sourcing

= Event Sourcing [1] ist ein Persistenzmechanismus bei dem alle Anderungen in
einer Anwendung als Sequenz von Events gespeichert werden

= Zeigt nicht nur den aktuellen Zustand einer Entitat, sondern auch, wie dieser

Zustand entstanden ist
» Chronologischen Liste aller Anderungen (Domain Events)
* Erlaubt es einen beliebigen Zustand aus der Vergangenheit herzustellen

= Beispiel Kontofihrung: Kontostand (Zustand) ergibt sich aus den einzelnen
Anderungen (Buchungen)

= Vermehrter Einsatz im Zuge von Domain-Driven Design / Microservice-
Bewegung

[1] https://microservices.io/patterns/data/event-sourcing.html|

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

https://microservices.io/patterns/data/event-sourcing.html

Fachhochschule
Dortmund Weitere Fragen

University of Applied Sciences and Arts

SWT2 Persistierung © Prof. Dr. Sabine Sachweh

