
© SS 2021 Prof. Dr. Sabine Sachweh

University of Applied Sciences and Arts Dortmund

Softwaretechnik 2
Entwurfsmuster

Softwaretechnik 2

Struktur

1. Einführung

2. Architekturmodellierung / Grobentwurf

3. Architekturstile/–muster I

4. Architekturstile II

5. Architekturstile III

6. OOD der Businesslogik / Fachlogik

7. Entwurfsmuster

Businesslogik § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 2

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.1. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)
7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)
7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 3

Softwaretechnik 2

Entwurfsmuster (design patterns)

§ Bewährte, generische Lösung für ein immer wiederkehrendes Entwurfsproblem
§ Zusammengefasst in einem Standardwerk von 1994:

Design Patterns. Elements of Reusable Object-Oriented Software
§ Autoren (GoF, Gang of Four):

Von Links nach rechts: Ralph Johnson, Erich Gamma, Richard Helm und John Vlissides († 2005)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 4

Johnson
Gamma Helm

Vlissides

Softwaretechnik 2

Kölner Dom – Architekturstil/-muster

§ Seit 1996 UNESCO Weltkulturerbe
§ Erbaut aus Londorfer Basalt, einem Lava-

gestein aus dem Vogelsberg-Massiv
§ Der Dom weist eine Außenlänge von 144,58

Metern und eine Höhe von 157,38 Meter auf.
§ Gotische Kathedrale mit dem Grundriss

fünfschiffige Basilika mit einem ausladenden
Querhaus.

§ Bauschema einer klassischen fünfschiffigen
Basilika im Querschnitt:

Das mittlere Hauptschiff ist höher als die niedrigen Seitenschiffe.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 5

Softwaretechnik 2

Nordportal des Kölner Doms

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 6

Bonifatiusportal Michaelsportal Maternusportal

Softwaretechnik 2

Entwurfsmuster in der Architektur

§ Hauptportal im nördlichen Querhaus
des Kölner Doms

§ Michaelsportal (Mitte)

§ Wie würden Sie dieses Portal beschreiben?

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 7

Softwaretechnik 2

Entwurfsmuster in der Architektur

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 8

§ der Fachmann (Architekt) sagt:

• Dombaumeister Zwirner entwarf die 1843-1855
errichtete neugotische Nordfassade

• über dem Michelsportal ragt ein
hoher Wimperg mit fünf Statuen auf
o Ambrosius
o Gregor der Große
o Auferstandener Christus
o Augustinus
o Hieronymus

• der Wimperg wird von Filialen flankiert
und besitzt deutlich ausgearbeitete Krabben,
sowie eine Kreuzblume als Giebelblume

Softwaretechnik 2

Entwurfsmuster in der Architektur

§ Der Wimperg (auch Wimberg) ist ein
giebelförmiges Bauteil der Gotik zur
Bekrönung von Portalen und Fenstern.

§ Die Schrägen des Wimpergs sind mit
Krabben und

§ oft von zwei kleinen Türmchen, den Fialen
geschmückt.

§ Die Spitze wird häufig mit einer
Giebelblume abgeschlossen.

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 9

[www.architektur-lexikon.de]

Giebelblume

Filialen

Softwaretechnik 2

Entwurfsmuster in der Softwaretechnik (design patterns)

§ Beschreibung eines Musters
• Name

o Beschreibt ein Entwurfsproblem, seine Lösung und Konsequenzen mit einem oder zwei
Wörtern

• Problembeschreibung
o Gibt an, wann das Muster anwendbar ist
o Problem und Kontext
o Auch Erklärung spezifischer Entwurfsprobleme

• Lösungsbeschreibung
o Kein konkreter Entwurf und keine Implementierung
o Abstrakte Beschreibung des Entwurfsproblems
o Beschreibt allgemeine Anordnung der Klassen bzw. Objekte

• Konsequenzen
o Zeit- und Speichereffizienz
o Sprach- und Implementierungseigenschaften
o Auswirkungen auf Flexibilität, Erweiterbarkeit und Portierbarkeit

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 10

Softwaretechnik 2

Entwurfsmuster (design patterns)

§ Klassifikation der Muster
• Erzeugungsmuster (creational patterns)

Helfen, ein System unabhängig davon zu machen, wie seine Objekte erzeugt,
zusammengesetzt und repräsentiert werden

• Strukturmuster (structural patterns)
Befassen sich mit der Zusammensetzung von Klassen und Objekten zu größeren
Strukturen

• Verhaltensmuster (behavioral patterns)
- Befassen sich mit der Interaktion zwischen Objekten und Klassen
- Beschreiben komplexe Kontrollflüsse, die zur Laufzeit schwer nachvollziehbar sind

§ Weitere Klassifikation der Muster
• Klassenbasierte Muster

-Behandeln Beziehungen zwischen Klassen
- Ausgedrückt durch Generalisierungsstrukturen
- Festgelegt zur Übersetzungszeit

• Objektbasierte Muster
- Beschreiben Beziehungen zwischen Objekten, die zur Laufzeit geändert werden können
- Benutzen auch bis zu einem gewissen Grad die Generalisierung

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 11

Softwaretechnik 2

Klassenbiliothek

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 12

Softwaretechnik 2

Klassenbibliothek

Beispiel für eine fundamentale Klassenbibliothek
Die C++-Standardbibliothek bietet beispielsweise:
§ Container
§ Iteratoren
§ Algorithmen
§ Funktionsobjekte
§ Zeichenketten

etc.

§ Eingabe und Ausgabe
§ Lokalisierung
§ Numerik
§ Ausnahmen
§ RunTime Type Information

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 13

Softwaretechnik 2

Framework (1/2)

§ Menge von zusammenarbeitenden Klassen, die einen wiederverwendbaren
Entwurf für einen bestimmten Anwendungsbereich implementieren

§ Besteht aus konkreten und – insbesondere – aus abstrakten Klassen, die
Schnittstellen definieren

§ Definition von Unterklassen zur Verwendung und Anpassung des Frameworks
• Selbstdefinierte Unterklassen empfangen Botschaften von vordefinierten Framework-

Klassen
• Hollywood-Prinzip: »Don’t call us, we’ll call you«.

§ Ist immer spezifisch auf einen Anwendungsbereich ausgelegt
• Beispiele

o Erstellung grafischer Editoren
o Erstellung von Finanzsoftware

§ Spezialisierung für eine konkrete Anwendung durch Ableiten von Unterklassen aus
den abstrakten Framework-Klassen

§ Realisierung der Frameworks mittels Programmiersprachen
Frameworks können also ausgeführt und direkt wiederverwendet werden

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 14

Softwaretechnik 2

Framework (2/2)

Framework
§ Ermöglicht hohe Wiederverwendung
§ Bestimmt die Architektur der Anwendung
§ Definiert die Struktur der Klassen und Objekte und deren Verantwortlichkeiten
§ Legt fest, wie Klassen und Objekte zusammenarbeiten
§ Legt fest, wie der Kontrollfluss aussieht
§ Anwendungsprogrammierer kann sich auf die Details der Anwendung konzentrieren

Muster vs. Framework
§ Entwurfsmuster sind abstrakter als Frameworks
• Werden nur beispielhaft durch Programmcode repräsentiert
• Anwendung von Entwurfsmustern mit einer neuen Implementierung verbunden

§ Entwurfsmuster sind kleiner als Frameworks
• Ein typisches Framework enthält mehrere Entwurfsmuster

§ Entwurfsmuster sind weniger spezialisiert als Frameworks
• Keine Beschränkung auf einen bestimmten Anwendungsbereich

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 15

Softwaretechnik 2

Entwurfsmuster

Erzeugende Muster Strukturelle Muster Verhaltensmuster
Singleton (Einzelstück) Facade(Fassade) Mediator (Vermittler)

Prototype (Prototyp) Decorator (Dekorierer) Iterator

Factory Method (Fabrikmethode) Bridge (Brücke) Interpreter

Builder (Erbauer) Composite (Kompositum) Command (Kommando)

Abstract Factory (Abstrakte Fabrik) Adapter Chain of Responsibility (Zustandigkeitskette)

Flyweight (Fliegengewicht) Memento

Proxy (Stellvertreter) Observer (Beobachter)
State (Zustand)
Strategy (Strategie)

Template Method (Schablonenmethode)
Visitor (Besucher)

Die klassischen Entwurfsmuster

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 16

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)
7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)
7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 17

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Pizza

Pizza(...) <<create>>

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 18

<<use>> <<use>>

Pizzaservice

nimmBestellungAn(...)
bereitePizzaZu():Pizza
lieferePizzaAus()

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Pizza

Pizza(...) <<create>>

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 19

Pizzaservice

nimmBestellungAn(...)
bereitePizzaZu():Pizza
lieferePizzaAus()

<<use>> <<use>>

Wie sieht das Ganze bei verschiedenen Gerichten aus?

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 20

Lieferservice

nimmBestellungAn(...)
bereiteGerichtZu(auswahl:String):Gericht
liefereGerichtAus()

<<use>> <<use>>

Pizza

Pizza(...)

Gericht
{abstract}

<<create>>

Burger

Burger(...)

<<create>>

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 21

Lieferservice

nimmBestellungAn(...)
bereiteGerichtZu(auswahl:String):Gericht
liefereGerichtAus()

<<use>> <<use>>

Pizza

Pizza(...)

Gericht
{abstract}

<<create>>

Burger

Burger(...)

<<create>>

Als Framework geeignet? ja nein vielleicht

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 22

Lieferservice
{abstract}

nimmBestellungAn(...)
bereiteGerichtZu():Gericht {abstract}
liefereGerichtAus()

<<use>>
<<use>>

Pizza

Pizza(...)

Gericht
{abstract}

<<create>>

Burger

Burger(...)

<<create>>

Burgerservice

bereiteGerichtZu():Burger

Pizzaservice

bereiteGerichtZu():Pizza

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

public class Client {

static Lieferservice l;

public static void main(String [] argv) {

if (argv[0] == "pizza") {
l = new Pizzaservice();

}
if (argv[0] == "burger") {
l = new Burgerservice();

}

Gericht g = l.bereiteGerichtZu();
}

}

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 23

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 24

Lieferservice
{abstract}

nimmBestellungAn(...)
bereiteGerichtZu():Gericht {abstract}
liefereGerichtAus()

<<use>>
<<use>>

Pizza

Pizza(...)

Gericht
{abstract}

<<create>>

Burger

Burger(...)

<<create>>

Burgerservice

bereiteGerichtZu():Burger

Pizzaservice

bereiteGerichtZu():Pizza

Als Framework geeignet? ja nein vielleicht

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Client

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 25

Lieferservice
{abstract}

nimmBestellungAn(...)
bereiteGerichtZu():Gericht {abstract}
liefereGerichtAus()

<<use>>
<<use>>

Pizza

Pizza(...)

Gericht
{abstract}

<<create>>

Burger

Burger(...)

<<create>>

Burgerservice

bereiteGerichtZu():Burger

Pizzaservice

bereiteGerichtZu():Pizza

Creator
Product

factoryMethod

factoryMethod

factoryMethod

ConcreteCreatorA

ConcreteCreatorB
Concrete
ProductB

Concrete
ProductA

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Anwendbarkeit
§ Verwendung des Musters, wenn
• eine Klasse die von ihr zu erzeugenden Objekte nicht im voraus kennen kann
• die Unterklassen festlegen sollen, welche Objekte sie erzeugen

Struktur

Definiert die Schnittstelle der Objekte,
die von der Fabrikmethode erzeugt werden.

Implementiert die Schnittstelle des Products.

Deklariert die abstrakte Fabrikmethode.

Überschreibt die Fabrikmethode, so dass
sie ein Objekt von ConcreteProduct

zurückgibt.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 26

Softwaretechnik 2

Fabrikmethode (klassenbasiertes Erzeugungsmuster)

Anwendbarkeit
§ Verwendung des Musters, wenn
• eine Klasse die von ihr zu erzeugenden Objekte nicht im voraus kennen kann
• die Unterklassen festlegen sollen, welche Objekte sie erzeugen

Struktur

Definiert die Schnittstelle der Objekte,
die von der Fabrikmethode erzeugt werden.

Implementiert die Schnittstelle des Products.

Deklariert die abstrakte Fabrikmethode.

Überschreibt die Fabrikmethode, so dass
sie ein Objekt von ConcreteProduct

zurückgibt.

⇒ Fabrikmethoden verhindern, dass Sie anwendungsspezifische
Klassen in den Code des Frameworks anbinden müssen!

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 27

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)
7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 28

Softwaretechnik 2

Singleton (objektbasiertes Erzeugungsmuster)

Problemstellung zentrales Objekt,
das eigentlich überall zugreifbar sein muss.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 29

Spiel

Spieler

Spielfeld

Spielfiguren

Runde
History

Settings

Softwaretechnik 2

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit
§ Verwenden Sie dieses Muster, wenn

• es genau ein Objekt eine Klasse geben soll und ein einfacher Zugriff darauf bestehen soll
• das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und

Klienten das erweiterte Exemplar verwenden können, ohne ihren Code zu ändern

• => einfache Implementierung

public final class Singleton {
public static final Singleton uniqueInstance = new Singleton();
private Singleton(){ } //Konstruktor

}

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 30

Schalter um Verfeinerungsoption abzuschalten

Softwaretechnik 2

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit
§ Verwenden Sie dieses Muster, wenn

• es genau ein Objekt eine Klasse geben und ein einfacher Zugriff darauf bestehen soll
• das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und

Klienten das erweiterte Exemplar verwenden können, ohne ihren Code zu ändern

• => kein öffentlicher Zugriff, sondern über Methode + Erzeugung erst bei Zugriff

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 31

public final class Singleton {
private static final Singleton uniqueInstance = null;
private Singleton(){ } //Konstruktor

public static Singleton getInstance(){
if (uniqueInstance == null){

uniqueInstance = new Singleton();
}
return uniqueInstance;

}
}

Schalter um Verfeinerungsoption abzuschalten

Softwaretechnik 2

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit
§ Verwenden Sie dieses Muster, wenn

• es genau ein Objekt für eine Klasse geben und ein einfacher Zugriff darauf bestehen soll
• das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und

Klienten das erweiterte Exemplar verwenden können, ohne ihren Code zu ändern
=> zusätzlich noch Daten im Objekt

Struktur
Singleton

- uniqueInstance:Singleton
- singletonData:DataType

- Singleton()
+ getInstance():Singleton
+ singletonOperation()
+ getSingletonData():DataType

return
uniqueInstance

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 32

Softwaretechnik 2

Singleton (objektbasiertes Erzeugungsmuster)

Anwendbarkeit
§ Verwenden Sie dieses Muster, wenn

• es genau ein Objekt für eine Klasse geben und ein einfacher Zugriff darauf bestehen soll
• das einzige Exemplar durch Spezialisierung mittels Unterklassen erweitert wird und

Klienten das erweiterte Exemplar verwenden können, ohne ihren Code zu ändern
=> zusätzlich noch Daten im Objekt

Struktur
Singleton

- uniqueInstance:Singleton
- singletonData:DataType

- Singleton()
+ getInstance():Singleton
+ singletonOperation()
+ getSingletonData():DataType

return
uniqueInstance

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 33

⇒ Verbesserung gegenüber globalen Variablen

⇒ Singleton-Klasse kann durch Unterklassen spezialisiert werden

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)
7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 34

Softwaretechnik 2

Matruschkas Stapelkisten

Frischhalteboxen

Kompositum-Muster (objektbasiertes Strukturmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 35

Softwaretechnik 2

Kompositum-Muster (objektbasiertes Strukturmuster)

Anwendbarkeit
§ Verwenden Sie dieses Muster, wenn

• Sie whole-part-Hierarchien von Objekten darstellen wollen
• die Klienten keinen Unterschied zwischen elementaren und zusammengesetzten Objekten

wahrnehmen und alle Objekte gleich behandeln sollen

Struktur
Component {abstract}

+ operation(){abstract}
Client

Leaf

+ operation()

Composite

+ operation()
+ add(c:Component)
+ remove(c:Component)
+ getPart(i:int):Component

Repräsentiert die Klienten.

Repräsentiert elementare
Objekte.

Aggregatklasse, definiert das Verhalten von
zusammengesetzten Objekten, speichert

Teilobjekte und implementiert Operationen,
die sich auf Teilobjekte beziehen.

Deklariert die Schnittstelle für alle Objekte,
implementiert Default-Verhalten und

deklariert eine Schnittstelle zum Zugriff und
Verwalten von Teilobjekten.1

0..1

*

- parts

for all g in parts
g.operation()

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 36

Softwaretechnik 2

Kompositum-Muster (objektbasiertes Strukturmuster)

Beispiel 1: Gruppierung von Grafikelementen

Graphic {abstract}

Xlo: int; Ylo: int; Xru: int; Yru: int;

+move() {abstract}
+draw() {abstract}
+resize(size:int) {abstract}

Circle

+move()
+draw()
+resize(size:int)

Line

+move()
+draw()
+resize(size:int)

Group
+move()
+draw()
+resize(size:int)
+add(g:Graphic)
+remove(g:Graphic)
+getPart(i:int):Graphic

- parts

*

0..1

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 37

Softwaretechnik 2

Kompositum-Muster (objektbasiertes Strukturmuster)

Beispiel 2: GUI-Komponenten

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 38

Softwaretechnik 2

Kompositum-Muster (objektbasiertes Strukturmuster)

Beispiel 2: GUI-Komponenten

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 39

⇒ Klient wird einfacher

⇒ Es ist einfach, neue Arten von Komponenten einzufügen

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)
7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 40

Softwaretechnik 2

Proxy-Muster (objektbasiertes Strukturmuster)

Anwendungsbeispiele
§ Remote-Proxy als lokaler Vertreter für ein Objekt auf einem anderen Computer

§ Virtuelles Proxy erzeugt »teure« Objekte auf Verlangen à z.B. Cache

§ Schutz-Proxy kontrolliert Zugriff auf das Original

§ Smart Reference als Ersatz für einen einfachen Zeiger, der zusätzlich folgende
Funktionen anbietet:
• Zählen der Referenzen auf das eigentliche Objekt
• Automatische Freigabe, wenn es keine Referenzen mehr besitzt
• Laden eines persistenten Objekts, wenn es erstmalig referenziert wird
• Testen eines Objekts auf locking, bevor darauf zugegriffen wird

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 41

Softwaretechnik 2

Proxy-Muster (objektbasiertes Strukturmuster)

Struktur

Definiert die gemeinsame Schnittstelle des
echten Objekts und des Proxy-Objekts

Kontrolliert Zugriff auf das eigentliche
Objekt und ist dafür zuständig, es zu

erzeugen und zu löschen.
Definiert das echte Objekt.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 42

Softwaretechnik 2

Proxy-Muster (objektbasiertes Strukturmuster)

Beispiel: Cache für Funktionswerte (Fakultät)

Factorial
{abstract}

+ at(x:int):long {abstract}

FactorialFunction

+ at(x:int):long

FactorialCache

- values:Map

+ at(x:int):long

-f

public class FactorialFunction extends Factorial
{

@Override
public long at(int x) {

long res = 1;
while(x > 0) {

res *= x;
x--;

}
return res;

}
}

1

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 43

Softwaretechnik 2

Proxy-Muster (objektbasiertes Strukturmuster)

Beispiel: Cache für Funktionswerte (Fakultät)

Factorial
{abstract}

+ at(x:int):long {abstract}

FactorialFunction

+ at(x:int):long

FactorialCache

- values:Map

+ at(x:int):long

-f

1

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 44

import java.util.HashMap;
import java.util.Map;

public class FactorialCache extends Factorial {
private FactorialFunction f;
private Map<Integer, Long> values;

public FactorialCache() {
f = new FactorialFunction();
values = new HashMap<Integer, Long>();

}

@Override
public long at(int x) {

long y;
if(values.containsKey(x)) {

y = values.get(x); // use cached result
} else {

y = f.at(x); // compute result
values.put(x, y); // insert result into cache

}
return y;

}
}

Softwaretechnik 2

Proxy-Muster (objektbasiertes Strukturmuster)

Beispiel: Cache für Funktionswerte (Fakultät)

Factorial
{abstract}

+ at(x:int):long {abstract}

FactorialFunction

+ at(x:int):long

FactorialCache

- values:Map

+ at(x:int):long

-f

1

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 45

public class FactorialTest {
public static void main(String[] args) {

// cached version of factorial
Factorial factorial = new FactorialCache();
factorial.at(10);
factorial.at(10);
factorial.at(20);

}
}

Softwaretechnik 2

Proxy-Muster (objektbasiertes Strukturmuster)

Beispiel: Cache für Funktionswerte (Fakultät)

Factorial
{abstract}

+ at(x:int):long {abstract}

FactorialFunction

+ at(x:int):long

FactorialCache

- values:Map

+ at(x:int):long

-f

1

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 46

public class FactorialTest {
public static void main(String[] args) {

// cached version of factorial
Factorial factorial = new FactorialCache();
factorial.at(10);
factorial.at(10);
factorial.at(20);

}
}

⇒ Proxy leitet Befehle an das echte Objekt weiter

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)

7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 47

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie <Nr.>

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie <Nr.>

Swing

Client

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Beispiel: Messages in graphischen Nutzungsoberflächen

Probleme
§ Jeder Nutzer geht anders vor
§ Sind die Abhängigkeiten nicht bekannt => Fehler
§ Treten Änderungen an der Umsetzung des Packages auf, müssen die Nutzer sich erst

einarbeiten
§ Jedes Message-Fenster sieht ggf. anders aus

Probleme (allgemein)
§ Systemwissen notwendig. Jeder Client muss nicht nur jede benötigte Klasse des Systems

kennen, sondern auch ihr Zusammenspiel und ihre Funktionsweise, um sie nutzen zu können.
§ Abhängigkeiten und geringe Änderungsstabilität. Da jeder Client viele verschiedene Klassen

kennen muss, steigen seine Abhängigkeiten. Er ist hart an das System gekoppelt. Änderungen
am System führen zwangläufig dazu, dass der Clientcode bricht oder nicht mehr korrekt
funktioniert - und das gilt für jeden Client, der das System nutzt. Die Folge ist hoher
Wartungsaufwand.

§ Coderedundanz und Gefahr von Inkonsistenz. Alle Clients, die eine Message ausgeben
wollen, müssen immer den gleichen Code schreiben.

Einführung § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie <Nr.>

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Anwendbarkeit
§ Verwendung des Muster, wenn

• einfache Schnittstellen zu einem komplexen Paket angeboten werden sollen
• es zahlreiche Abhängigkeiten zwischen Klienten und einem Paket gibt
• Pakete in Schichten organisiert werden sollen

Struktur

Definiert keine neue
Funktionalität.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 51

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Beispiel

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 52

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Beispiel

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 53

Client
Client

Client

JOptionPane

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Struktur

Definiert keine neue
Funktionalität.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 54

Softwaretechnik 2

Fassaden-Muster (objektbasiertes Strukturmuster)

Struktur

Definiert keine neue
Funktionalität.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 55

⇒ Vereinfachung der Benutzung des Systems durch
Reduzierung der Klassen, die den Klienten bekannt sein
müssen

⇒ Lose Kopplung erleichtert Austausch von Paketen und
deren unabhängige Implementierung

⇒ Klienten können die Fassade umgehen und direkt auf die
Klassen des Pakets zugreifen

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)

7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)
7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 56

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 57

§ Strenge Drei-Schichten-Architektur
• GUI-Schicht kann nur auf Fachkonzeptschicht zugreifen
• Fachkonzeptschicht kann nur auf Datenhaltungsschicht zugreifen
• Vorteil:

GUI-Schicht unabhängig von gewählter Speicherung der Daten

§ Flexible Drei-Schichten-Architektur
• GUI-Schicht kann auf Fachkonzept-

schicht und Datenhaltungsschicht zugreifen
• Vorteile: größere Flexibilität,

bessere Performance
• Nachteile: geringere Wartbarkeit,

Änderbarkeit und
Portabilität

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 58

Artikel

nummer
bezeichnung
preis

Artikelliste

uniqueInstance

getInstance()
insertArtikel()
getArtikel()
modifyArtikel()

subject

*

JDialog

all all

ArtikelView

Artikelliste
View

ArtikelGUI

ArtikelLogik

ArtikellisteView

artikellisteTable

onInit()
onAendern()
update()

ArtikelView

nummerTextField
bezeichnungTextField
preisTextField

onInit()
onOK()
update()
save()

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 59

1 SmartWatch
2 TV
3 Tablet

SmartWatch

1

156,99

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 60

1 SmartWatch
2 TV
3 Tablet

Pebble
1

156,99
Inkonsistenz

???

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 61

Artikel

nummer
bezeichnung
preis

Artikelliste

uniqueInstance

getInstance()
insertArtikel()
getArtikel()
modifyArtikel()

subject

*

JDialog

all all

ArtikelView

Artikelliste
View

ArtikelGUI

ArtikelLogik

ArtikellisteView

artikellisteTable

onInit()
onAendern()
update()

ArtikelView

nummerTextField
bezeichnungTextField
preisTextField

onInit()
onOK()
update()
save()

?

✗

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 62

Artikel

nummer
bezeichnung
preis

Artikelliste

uniqueInstance

getInstance()
insertArtikel()
getArtikel()
modifyArtikel()

subject

*

JDialog

all all

ArtikelGUI

ArtikelLogik

ArtikellisteView

artikellisteTable

onInit()
onAendern()
update()

ArtikelView

nummerTextField
bezeichnungTextField
preisTextField

onInit()
onOK()
update()
save()

Observer
{abstract}

update(){abstract}

Subject
{abstract}

attach(o:Observer)
detach(o:Observer)
notify()

*

Framework

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
§ Verwendung des Muster, wenn

• eine Abstraktion besitzt zwei Aspekte, die wechselseitig voneinander abhängen
• die Änderung eines Objekts die Änderung anderer Objekte unbekannter Anzahl impliziert
• ein Objekt andere Objekte benachrichtigen soll und diese Objekte sind nur lose gekoppelt

Struktur

Kennt eine beliebige Anzahl
von Beobachtern

Definiert die Schnittstelle für alle konkreten
Objekte, die über Änderungen eines
subjects informiert werden müssen.

Speichert die Daten, die
für die konkreten

Beobachter relevant sind.
Kennt das konkrete Subjekt und

sorgt für Konsistenz mit dem
konkreten Subjekt.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 63

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Dynamische Sicht

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 64

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 65

Artikel

nummer
bezeichnung
preis

Artikelliste

uniqueInstance

getInstance()
insertArtikel()
getArtikel()
modifyArtikel()

subject

*

JDialog

all all

ArtikelGUI

ArtikelLogik

ArtikellisteView

artikellisteTable

onInit()
onAendern()
update()

ArtikelView

nummerTextField
bezeichnungTextField
preisTextField

onInit()
onOK()
update()
save()

Observer
{abstract}

update(){abstract}

Subject
{abstract}

attach(o:Observer)
detach(o:Observer)
notify()

*

Framework

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 66

Artikel

nummer
bezeichnung
preis

Artikelliste

uniqueInstance

getInstance()
insertArtikel()
getArtikel()
modifyArtikel()

subject

*

JDialog

all all

ArtikelGUI

ArtikelLogik

ArtikellisteView

artikellisteTable

onInit()
onAendern()
update(o:observable,
arg:Object)

ArtikelView

nummerTextField
bezeichnungTextField
preisTextField

onInit()
onOK()
update()
save()

Observer
<<Interface>>

update(o:observable,
arg:Object){abstract}

Observable
{abstract}

notifyObservers()
deleteObserver()
addObserver()
setChanged()

*

JavaSE

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
§ Verwendung des Muster, wenn

• eine Abstraktion besitzt zwei Aspekte, die wechselseitig voneinander abhängen
• die Änderung eines Objekts die Änderung anderer Objekte unbekannter Anzahl impliziert
• ein Objekt andere Objekte benachrichtigen soll und diese Objekte sind nur lose gekoppelt

Struktur

Kennt eine beliebige Anzahl
von Beobachtern

Definiert die Schnittstelle für alle konkreten
Objekte, die über Änderungen eines
subjects informiert werden müssen.

Speichert die Daten, die
für die konkreten

Beobachter relevant sind.
Kennt das konkrete Subjekt und

sorgt für Konsistenz mit dem
konkreten Subjekt.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 67

⇒ Subjekte und Beobachter können unabhängig
voneinander modifiziert und einzeln wiederverwendet
werden

⇒ Neue Beobachter können ohne Änderung des Subjekts
hinzugefügt werden

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver(Observer o)
removeObserver(Observer o)
notifyObservers()

Observer
{abstract}

update(){abstract}
*observers

Clock

seconds: int

getSeconds():int
getMinutes():int
setTime(int seconds) //changeState
tick() //changeState

DetailedClockObserver

seconds: int

getClock(): Clock
setClock(Clock clock)
update()

ClockObserver

minutes: int

getClock(): Clock
setClock(Clock clock)
update()

clock

clock

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 68

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver(Observer o)
removeObserver(Observer o)
notifyObservers()

Observer
{abstract}

update(){abstract}
*observers

Clock

seconds: int

getSeconds():int
getMinutes():int
setTime(int seconds) //changeState
tick() //changeState

DetailedClockObserver

seconds: int

getClock(): Clock
setClock(Clock clock)
update()

ClockObserver

minutes: int

getClock(): Clock
setClock(Clock clock)
update()

clock

clock

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 69

// Eine Beispiel-Implementierung
import java.util.ArrayList;
import java.util.List;

public abstract class Subject {
private List<Observer> observers;

protected Subject() {
observers = new ArrayList<Observer>();

}

public synchronized void addObserver(Observer observer) {
if(observer != null && !observers.contains(observer))
{

observers.add(observer);
}

}

public synchronized void removeObserver(Observer observer)
{

if(observer != null && observers.contains(observer))
{

observers.remove(observer);
}

}

public synchronized void notifyObservers() {
for(Observer observer : observers) {

observer.update();
}

}
}

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver(Observer o)
removeObserver(Observer o)
notifyObservers()

Observer
{abstract}

update(){abstract}
*observers

Clock

seconds: int

getSeconds():int
getMinutes():int
setTime(int seconds) //changeState
tick() //changeState

DetailedClockObserver

seconds: int

getClock(): Clock
setClock(Clock clock)
update()

ClockObserver

minutes: int

getClock(): Clock
setClock(Clock clock)
update()

clock

clock

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 70

// Eine Beispiel-Implementierung
public abstract class Observer {

public abstract void update();

}

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver(Observer o)
removeObserver(Observer o)
notifyObservers()

Observer
{abstract}

update(){abstract}
*observers

Clock

seconds: int

getSeconds():int
getMinutes():int
setTime(int seconds) //changeState
tick() //changeState

DetailedClockObserver

seconds: int

getClock(): Clock
setClock(Clock clock)
update()

ClockObserver

minutes: int

getClock(): Clock
setClock(Clock clock)
update()

clock

clock

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 71

public class Clock extends Subject {
private int seconds; // state

public int getSecounds() {
return seconds;

}

public int getMinutes() {
return seconds / 60;

}

public void setTime(int seconds) {
this.seconds = seconds;
notifyObservers();

}

public void tick() {
seconds++;
notifyObservers();

}
}

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver(Observer o)
removeObserver(Observer o)
notifyObservers()

Observer
{abstract}

update(){abstract}
*observers

Clock

seconds: int

getSeconds():int
getMinutes():int
setTime(int seconds) //changeState
tick() //changeState

DetailedClockObserver

seconds: int

getClock(): Clock
setClock(Clock clock)
update()

ClockObserver

minutes: int

getClock(): Clock
setClock(Clock clock)
update()

clock

clock

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 72

public class DetailedClockObserver extends Observer {
private int seconds = -1; // observer state
private Clock clock;

public Clock getClock() { ... }
public void setClock(Clock clock) { ... }

@Override
public void update() {

if(clock != null && seconds != clock.getSecounds()) {
seconds = clock.getSeconds();
System.out.println("time in seconds is " + seconds);

}
}

}

public class ClockObserver extends Observer {
private int minutes = -1; // observer state
private Clock clock;

public Clock getClock() {
return clock;

}

public void setClock(Clock clock) {
if(this.clock != clock) {

if(this.clock != null) {
this.clock.removeObserver(this);

}
this.clock = clock;
if(clock != null) {

this.clock.addObserver(this);
}

}
}

@Override
public void update() {

if(clock != null && minutes != clock.getMinutes()) {
minutes = clock.getMinutes();
System.out.println("time in minutes is " + minutes);

}
}

}

Softwaretechnik 2

Beobachter-Muster (objektbasiertes Verhaltensmuster)

Uhren-Beispiel

Subject
{abstract}

addObserver(Observer o)
removeObserver(Observer o)
notifyObservers()

Observer
{abstract}

update(){abstract}
*observers

Clock

seconds: int

getSeconds():int
getMinutes():int
setTime(int seconds) //changeState
tick() //changeState

DetailedClockObserver

seconds: int

getClock(): Clock
setClock(Clock clock)
update()

ClockObserver

minutes: int

getClock(): Clock
setClock(Clock clock)
update()

clock

clock

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 73

public class ClockTest {
public static void main(String[] args) {

Clock clock = new Clock();

ClockObserver clockObserver = new ClockObserver();
clockObserver.setClock(clock);

DetailedClockObserver detailedClockObserver = new DetailedClockObserver();
detailedClockObserver.setClock(clock);

clock.setTime(0);
for(int i = 0; i < 120; i++) {

clock.tick();
try {

Thread.sleep(1000);
} catch (InterruptedException e) {

System.out.println(e.getMessage());
}

}
}

}

Ausgabe
time in minutes is 0
time in seconds is 0
time in seconds is 1
time in seconds is 2
time in seconds is 3
...
time in seconds is 59
time in minutes is 1
time in seconds is 60
...

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)

7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 74

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
§ Array anbieten mit konfigurierbarem Vergleichskriterium

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 75

Array

-a: int []

+sort()
#compare(i:int,j:int):int

Framework

Vergleich soll konfigurierbar
werden!

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
§ Array anbieten mit konfigurierbarem Vergleichskriterium

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 76

Framework

Array
{abstract}

-a: int []

+sort() //templateMethod
#compare(i:int,j:int):int {abstract} //primitiveOperation

AscendingSortedArray

#compare(i:int,j:int):int

DescendingSortedArray

#compare(i:int,j:int):int

schematischer, immer
gleicher Algorithmus

Variationsmöglichkeit
für Nutzer des FWs

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
§ Array anbieten mit konfigurierbarem Vergleichskriterium

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 77

Framework

Array
{abstract}

-a: int []

+sort() //templateMethod
#compare(i:int,j:int):int {abstract} //primitiveOperation

AscendingSortedArray

#compare(i:int,j:int):int

DescendingSortedArray

#compare(i:int,j:int):int

schematischer, immer
gleicher Algorithmus

Variationsmöglichkeit
für Nutzer des FWs

public abstract class Array {
private int[] a;
public Array(int[] array) {

this.a = array;
}

public void sort() { // simple bubble sort
for(int i = a.length-1; i >= 0; --i) {

for(int j = 0; j < i; ++j) {
if((compare(a[j], a[j+1]) > 0) {

int temp = a[j];
a[j] = a[j+1];
a[j+1] = temp;

}
}

}
}

protected abstract int compare(int i, int j);

public int[] getArray() { return a; }
public void setArray(int[] a) { this.a = a; }

}

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
§ Array anbieten mit konfigurierbarem Vergleichskriterium

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 78

Framework

Array
{abstract}

-a: int []

+sort() //templateMethod
#compare(i:int,j:int):int {abstract} //primitiveOperation

AscendingSortedArray

#compare(i:int,j:int):int

DescendingSortedArray

#compare(i:int,j:int):int

schematischer, immer
gleicher Algorithmus

Variationsmöglichkeit
für Nutzer des FWs

public class AscendingSortedArray extends Array {
public AscendingSortedArray(int[] array) {

super(array);
}

@Override
protected int compare(int i, int j) {

if(i == j) {
return 0;

} else if(i > j) {
return +1;

} else {
return -1;

}
}

}

Für kleiner werdende Werte
Vorzeichen umdrehen!

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
§ Array anbieten mit konfigurierbarem Vergleichskriterium

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 79

Framework

Array
{abstract}

-a: int []

+sort() //templateMethod
#compare(i:int,j:int):int {abstract} //primitiveOperation

AscendingSortedArray

#compare(i:int,j:int):int

DescendingSortedArray

#compare(i:int,j:int):int

schematischer, immer
gleicher Algorithmus

Variationsmöglichkeit
für Nutzer des FWs

public class ArrayTest {
public static void main(String[] args) {

int[] array = {2, 4, 3, 1};
System.out.println("Array");
System.out.println("-----");
for(int value : array) {

System.out.println(value);
}

Array ascending = new AscendingSortedArray(array);
ascending.sort();

System.out.println("\nAscending Sorted Array");
System.out.println("----------------------");
for(int value : ascending.getArray()) {

System.out.println(value);
}

Array descending = new DescendingSortedArray(array);
descending.sort();

System.out.println("\nDescending Sorted Array");
System.out.println("-----------------------");
for(int value : descending.getArray()) {

System.out.println(value);
}

}
}

Ausgabe
Array

2
4
3
1

Ascending Sorted Array

1
2
3
4

Descending Sorted Array

4
3
2
1

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
§ Verwendung des Muster,

• um die invarianten Teile eines Algorithmus genau einmal festzulegen; konkrete Ausführung
der variierenden Teile wird den Unterklassen überlassen

• wenn gemeinsames Verhalten von Unterklassen in einer Oberklasse realisiert werden soll;
Vermeidung der Duplikation von Code

Struktur

Definiert abstrakte primitive
Operationen und implementiert

die Schablonenmethode

Implementiert die primitiven
Operationen der abstrakten

Oberklasse.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 80

Softwaretechnik 2

Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
§ Verwendung des Muster,

• um die invarianten Teile eines Algorithmus genau einmal festzulegen; konkrete Ausführung
der variierenden Teile wird den Unterklassen überlassen

• wenn gemeinsames Verhalten von Unterklassen in einer Oberklasse realisiert werden soll;
Vermeidung der Duplikation von Code

Struktur

Definiert abstrakte primitive
Operationen und implementiert

die Schablonenmethode

Implementiert die primitiven
Operationen der abstrakten

Oberklasse.

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 81

⇒ Grundlegende Technik zur Wiederverwendung von Code

⇒ Für Klassenbibliotheken, um das gemeinsame Verhalten
in Bibliotheksklassen darzustellen

⇒ Realisieren das Hollywood-Prinzip
»Don't call us, we'll call you«

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)

7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 82

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Problemstellung
§ Verhaltenszustandsautomat ist programmatisch umzusetzen

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 83

stm Tempomat

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Lösungsansatz

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 84

Tempomat

+ausschalten() //Request()
+geschwindigkeitSetzen() //Request()
+regeln() //Request()
+setzeAktuellerZustand(z:Zustand)

Zustand {abstract}

+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Ausgeschaltet

+Ausgeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

zustand

Eingeschaltet

+Eingeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Regelnd

+Regelnd(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Lösungsansatz

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 85

Tempomat

+ausschalten() //Request()
+geschwindigkeitSetzen() //Request()
+regeln() //Request()
+setzeAktuellerZustand(z:Zustand)

Zustand {abstract}

+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Ausgeschaltet

+Ausgeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

zustand

Eingeschaltet

+Eingeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Regelnd

+Regelnd(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

public class Tempomat {
private Zustand aktuellerZustand;

public Tempomat() {
setAktuellerZustand(new Ausgeschaltet(this));

}

public Zustand getAktuellerZustand() {
return aktuellerZustand;

}

public void setAktuellerZustand(Zustand aktuellerZustand) {
this.aktuellerZustand = aktuellerZustand;
System.out.println("Setze Zustand auf: "+ aktuellerZustand);

}

public void geschwindigkeitSetzen() {
aktuellerZustand.geschwindigkeitSetzen();

}

public void regeln() {
aktuellerZustand.regeln();

}

public void ausschalten() {
aktuellerZustand.ausschalten();

}
}

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Lösungsansatz

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 86

Tempomat

+ausschalten() //Request()
+geschwindigkeitSetzen() //Request()
+regeln() //Request()
+setzeAktuellerZustand(z:Zustand)

Zustand {abstract}

+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Ausgeschaltet

+Ausgeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

zustand

Eingeschaltet

+Eingeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Regelnd

+Regelnd(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

public abstract class Zustand {
protected Tempomat tempomat;
public Zustand(Tempomat tempomat) {

this.tempomat = tempomat;
}
public abstract void geschwindigkeitSetzen();
public abstract void regeln();
public abstract void ausschalten();

}

public class Ausgeschaltet extends Zustand {

public Ausgeschaltet(Tempomat tempomat) {
super(tempomat);

}

@Override
public String toString() {

return "Ausgeschaltet";
}

@Override
public void geschwindigkeitSetzen() {

System.out.println("Geschwindigkeit wird gesetzt");
tempomat.setAktuellerZustand(new Eingeschaltet(tempomat));

}

@Override
public void regeln() {

System.out.println("Es kann nicht geregelt werden, wenn keine Geschwindigkeit gesetzt wurde");
}

@Override
public void ausschalten() {

System.out.println("Tempomat bleibt weiterhin ausgeschaltet");
}

}

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Lösungsansatz

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 87

Tempomat

+ausschalten() //Request()
+geschwindigkeitSetzen() //Request()
+regeln() //Request()
+setzeAktuellerZustand(z:Zustand)

Zustand {abstract}

+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Ausgeschaltet

+Ausgeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

zustand

Eingeschaltet

+Eingeschaltet(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

Regelnd

+Regelnd(t:Tempomat)
+ausschalten()
+geschwindigkeitSetzen()
+regeln()

public class TempomatTest {

public static void main(String[] args) {
Tempomat tempomat = new Tempomat();

tempomat.geschwindigkeitSetzen();
tempomat.regeln();
tempomat.geschwindigkeitSetzen();
tempomat.ausschalten();
tempomat.geschwindigkeitSetzen();
tempomat.regeln();
tempomat.regeln();
tempomat.ausschalten();

}
}

Ausgabe
Setze Zustand auf: Ausgeschaltet
Setze Zustand auf: Eingeschaltet
Geschwindigkeit wird neu gesetzt
Geschwindigkeit wird geregelt
Setze Zustand auf: Regelnd
Geschwindigkeit wird gesetzt
Setze Zustand auf: Eingeschaltet
Tempomat wird ausgeschaltet
Setze Zustand auf: Ausgeschaltet
Geschwindigkeit wird gesetzt
Setze Zustand auf: Eingeschaltet
Geschwindigkeit wird geregelt
Setze Zustand auf: Regelnd
Geschwindigkeit wird weiter geregelt
Tempomat wird ausgeschaltet
Setze Zustand auf: Ausgeschaltet

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
§ Verwendung des Muster,

• um es einem Objekt zu ermöglichen, sein Verhalten zu ändern, wenn sein interner Zustand
sich ändert.

• es sieht so aus, als ob das Objekt seine Klasse gewechselt hat.

Struktur
Gemeinsame Schnittstelle

aller Zustände.

Context ist die Klasse,
deren Objekte mehrere

innere zustände ein-
nehmen können.

Immer wenn eine Anfrage an
ein Context-Objekt ein-

geht, wird sie an den
entsprechenden Zustand

weitergereicht
Bearbeiten den Anfragen

zustandsspezifisch

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 88

Softwaretechnik 2

Zustand-Muster (objektbasiertes Verhaltensmuster)

Anwendbarkeit
§ Verwendung des Muster,

• um es einem Objekt zu ermöglichen, sein Verhalten zu ändern, wenn sein interner Zustand
sich ändert.

• es sieht so aus, als ob das Objekt seine Klasse gewechselt hat.

Struktur
Gemeinsame Schnittstelle

aller Zustände.

Context ist die Klasse,
deren Objekte mehrere

innere zustände ein-
nehmen können.

Immer wenn eine Anfrage an
ein Context-Objekt ein-

geht, wird sie an den
entsprechenden Zustand

weitergereicht
Bearbeiten den Anfragen

zustandsspezifisch

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 89

⇒ Grundlegende Technik zur Realisierung verschiedener
zustandsbasierter Verhaltensweisen.

⇒ Kapselung jedes Zustands in einer eigenen Klasse
ermöglicht gute Änderbar- und Wartbarkeit

Softwaretechnik 2

Struktur

7. Entwurfsmuster
7.2. Entwurfsmuster, Frameworks, Klassenbibliotheken

7.2. Beispiele für Muster
7.2.1. Fabrikmethode-Muster (klassenbasiertes Erzeugungsmuster)
7.2.2. Singleton-Muster (objektbasiertes Erzeugungsmuster)

7.2.3. Kompositum-Muster (objektbasiertes Strukturmuster)
7.2.4. Proxy-Muster (objektbasiertes Strukturmuster)
7.2.5. Fassaden-Muster (objektbasiertes Strukturmuster)

7.2.6. Beobachter-Muster (objektbasiertes Verhaltensmuster)
7.2.7. Schablonenmethode-Muster (objektbasiertes Verhaltensmuster)

7.2.8. Zustands-Muster (objektbasiertes Verhaltensmuster)
7.2.9. ….

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 90

Softwaretechnik 2

Entwurfsmuster

Erzeugende Muster Strukturelle Muster Verhaltensmuster
Singleton (Einzelstück) Facade(Fassade) Mediator (Vermittler)

Prototype (Prototyp) Decorator (Dekorierer) Iterator

Factory Method (Fabrikmethode) Bridge (Brücke) Interpreter

Builder (Erbauer) Composite (Kompositum) Command (Kommando)

Abstract Factory (Abstrakte Fabrik) Adapter Chain of Responsibility (Zustandigkeitskette)

Flyweight (Fliegengewicht) Memento

Proxy (Stellvertreter) Observer (Beobachter)
State (Zustand)
Strategy (Strategie)

Template Method (Schablonenmethode)
Visitor (Besucher)

Die klassischen Entwurfsmuster

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 91

Softwaretechnik 2

Fragen

Entwurfsmuster § SS 2021 § ©Prof. Dr. Sabine Sachweh § Folie 92

