
© Prof. Dr. Sabine Sachweh

So#waretechnik 2
Architekturstile III

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Unvollständige Auswahl großer So6waretechnik-Trends

Entwicklungs- und Architekturtrends im Zeitverlauf

1980

1985

1990

1995

2000

2005

2010

2015

2020

Prozedurale
Programmierung

Objektorientierung

Serviceorientierung
(SOA)

Komponenten-
orientierung

(KBSE)

Model Driven
Architecture

(MDA)

Broker
Architecture
(z.B. CORBA)

Micro-
services

Schichten-
architektur

Self-Contained
Systems

(SCS)

Cloud
Computing

Architekturs+le III
Microservice Architecture (MSA)
Self-contained Systems (SCS)

Microservice Architecture (MSA)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Unvollständige Auswahl großer So6waretechnik-Trends

Entwicklungs- und Architekturtrends im Zeitverlauf

1980

1985

1990

1995

2000

2005

2010

2015

2020

Prozedurale
Programmierung

Objektorientierung

Serviceorientierung
(SOA)

Komponenten-
orientierung

(KBSE)

Model Driven
Architecture

(MDA)

Broker
Architecture
(z.B. CORBA)

Micro-
services

Schichten-
architektur

Self-Contained
Systems

(SCS)

Cloud
Computing

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Rückblick

SOA

§ In einer SOA-Landschaft jede Anwendung in Services
aufgeteilt, auch solche, die schon vor Einführung der
SOA existierten.

§ Beispielsweise könnte ein Customer Relationship
Management (CRM) Dienste zum Anlegen von
Kunden, zum Abfragen von Informationen über
Kunden oder zum Anlegen neuer Interaktionen mit
einem Kunden anbieten.

§ Das CRM ist ein Backend-System und damit eine
Deployment-Einheit, da alle Services nur gemeinsam
in Produktion gebracht werden können.

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

Frontend

CRM anderes
Backend-System

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Rückblick

SOA

§ Die Kommunikation der Services muss eine einheitliche Technologie nutzen, über die alle
Services erreichbar sind.

§ asynchron: beispielsweise ESBs (Enterprise Service Bus)

§ synchron: beispielsweise SOAP, das u.a. die Kommunikation über HTTP erlaubt

§ Die Integration und Orchestrierung wird üblicherweise in einer eigenen Schicht umgesetzt. Sie
implementiert Geschäftsprozesse mit Hilfe der Services.
⇒ Wenn ein neuer Service in den Prozess integriert werden soll, ist dazu nur eine Änderung

des Prozesses notwendig. Die Services bleiben unverändert.

§ Verschiedenste Frontends können die Orchestrierung und die einzelnen Services nutzen, so
dass schnell dedizierte Frontends angeboten werden können.

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Vorteile

SOA

Vorteile (u.a.)

§ Services können in unterschiedlichsten
Geschäftsprozessen
und/oder unterschiedlichsten
Frontends wiederverwendet werden.

§ Änderungen an den
Geschäftsprozessen sind möglich,
ohne dass dazu die Services geändert
werden müssen. Es muss lediglich die
Orchestrierung angepasst werden.
à Flexibilität + Ressourcenschonung

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

Herausforderungen (u.a.)

§ Allerdings ist eine SOA mit einem erheblichen
Aufwand und erheblichen Investitionen verbunden:
• Alle IT-Systeme müssen in Services aufgeteilt werden,

die im Netzwerk ansprechbar sind.
• Alle Geschäftsprozesse in der Orchestrierung-Schicht

umgesetzt werden.
• Benutzungsschnittstellen müssen neu gestaltet

werden – üblicherweise als Portal.

§ Die intendierte Flexibilität kann nur erzielt werden,
wenn notwendige Änderungen in den Services, der
Orchestrierung oder im Portal isoliert werden
können.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Lessons learned

SOA

§ Auf der Ebene einer unternehmensweiten IT bietet sich eigentlich immer
zumindest eine Aufteilung in Services an.

§ Dazu ist eine einheitliche Kommunikationstechnologie notwendig.

§ Es ist aber fraglich, ob eine vollständige SOA mit einer Aufteilung in eine
getrennte Orchestrierung und Portal sinnvoll ist, denn das ist sehr aufwändig
und bietet kaum einen Mehrwert.

§ Anforderungen moderner internetbasierter Dienstleistungen wie
beispielsweise Streaming wird dieser Architekturstil vor allem in Bereichen
wie Skalierung, Robustheit, oder Entwicklungsgeschwindigkeit nicht gerecht

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Streaming-Dienstleister heben Skalierung auf ein anderes Niveau

§ 75+ Millionen aktive Nutzer jeden Monat

§ 58 Länder

§ 20.000 Neue Songs täglich

§ 2+ Milliarden Playlisten

§ „Saisonales Nutzerverhalten“

Traditionelle Architekturstile stoßen
hier an ihre Grenzen!

Beispiel Spo=fy

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh 11

Monolithen werden in unabhängige,
separate Prozesse zerschnitten!
⇒ „Microservices“

(So benannt seit ca. 2011/2012)

"Microservices are small, autonomous services that work together.“
[S. Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O’Reilly Media, 2015.]

SOA is dead long live services – Services reloaded

Microservices

Kernidee

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Microservice: Ursprung

§ der Begriff "microservice" wurde im Mai 2011 auf einem Architekten-Workshop in der
Nähe von Venedig diskutiert

§ um zu beschreiben, was aus Sicht der Teilnehmer einen üblichen Architekturstil
beschrieb, den viele von ihnen kürzlich untersucht hatten

§ in May 2012 entschied sich die gleiche Gruppe für den Begriff „Microservices“ als
angemessene Bezeichnung

§ James Lewis von ThoughtWorks präsentierte einige Ideen dazu auf der 33rd Degree,
einer Java Konferenz, in Krakow in Polen „Microservices – Java, the Unix Way“
[http://2012.33degree.org/pdf/JamesLewisMicroServices.pdf]

§ Fred George (ThoughtWorks) und Adrian Cockcroft damals Cloud-Architekt bei Netflix
(mit seinem Ansatz:"fine grained SOA“) und Joe Walnes, Dan North, Evan Botcher und
Graham Tackley propagierten parallel diesen neuen Architekturstil

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

“In short, the microservice architectural style is an approach to
developing a single application as a suite of small services, each running
in its own process and communicating with lightweight mechanisms,
often an HTTP resource API. These services are built around business
capabilities and independently deployable by fully automated
deployment machinery.”2)

- James Lewis & Martin Fowler

Begriffsdefini+on

13

[J. Lewis und M. Fowler, “Microservices”, https://martinfowler.com/articles/microservices.html, 2014.]

James Lewis

Martin Folwer

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Begriffsdefini=on

§ dementsprechend sind Microservices definiert ...

… als Ansatz eine einzelne Anwendung als Menge von kleinen Services zu
entwickeln, von denen jeder

§ in seinem eigenen Prozess läuft und

§ leichtgewichtig kommuniziert, häufig über eine HTTP Ressource API
§ diese Services werden ausgerichtet auf Geschäftsfunktionen entwickelt

§ sie können unabhängig depoyed werden durch ein voll automatisiertes
Deployment

SS 2016 § ©Prof. Dr. M. Hirsch/Prof. Dr. S . Sachweh § Folie 14

Der Gedanke dahinter entspricht weitgehend dem der Unix-Philosophie:
(„Do One Thing and Do It Well“)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Let‘s Split the Spo+fy Applica+on
Suche Profil

Library

Playlisten

Player Geräte

Friends

Übersicht

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Let‘s Split the Spo+fy Applica+on

Library

Friends

Geräte Suche

Player

Playlisten

Aggrega&on

Übersicht

Spo$fy

§ Jede Funktion bzw. jeder Service
wird als eigenständige Software
entwickelt à Deployment

§ Diese fungieren als Bausteine des
„großen Ganzen“ bzw. des Systems

§ Daten werden über fest vereinbarte
Kommunikationskanäle zwischen
den Bausteinen ausgetauscht
(Schnittstellen)

§ Choreographie anstatt
Orchestrierung

Microservice
Kommunika&onskanal
Gesamtsystem

Legende

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Weitere Abgrenzung zur SOA

Microservices

§ Microservices und SOA haben das Ziel die Entwicklung von Software zu flexibilisieren,
allerdings auf sehr verschiedene Art.

§ Microservices setzen auf einer anderen Ebene als SOA an.
• Microservices dienen zur Strukturierung einer Anwendung, während
• SOA eine Strategie zur Strukturierung einer gesamten IT eines Unternehmens ist.

⇒ SOA und Microservices unterscheiden sich von der Ausrichtung fundamental, auch
wenn sie ähnliche Kommunikationsmechanismen nutzen können.

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

„Perhaps, Microservice are SOA done right.“

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Weitere Abgrenzung zur SOA

Microservices

§ Microservices können auf ein Projekt beschränkt sein
⇒ keine unternehmensweite Entscheidung.

§ Microservices sind nur eine Möglichkeit der Modularisierung. Andere wie beispielsweise
Bibliotheken oder andere Mechanismen werden nicht ausgeschlossen.

§ Microservices unabhängig voneinander in Produktion gebracht werden.

§ Jeder Microservice kann in einem eigenen Prozess, einer eigenen virtuelle Maschine (VM)
oder einem Docker-Container laufen.
⇒ Starke Trennung (Entkopplung) der Microservices.

§ Die Microservices müssen zu einer Anwendung kombiniert werden, wie beispielsweise
• über REST-Schnittstellen oder
• als Teil einer Web-Schnittstelle

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

Microservice 1

Microservice 2

Microservice3

Microservice 4

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Ziele

Microservices

Erhoffte Vorteile durch den Einsatz von Microservices1)

§ Wiederverwendbarkeit

§ Ersetzbarkeit

§ Technologische Heterogenität

§ Robustheit

§ Skalierbarkeit

§ Einfache Bereitstellung

§ Parallelisierung des Entwicklungsprozesses

19

1) [S. Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O’Reilly Media, 2015.]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Eigenscha6en

Microservices

Microservice-Architekturen legen typischerweise einen Fokus auf folgende

1) [S . Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O’Reilly Media, 2015.]
2) [J. Lewis und M. Fowler, “Microservices”, https://martinfowler.com/articles/microservices.html, 2014.]

3) [I. Nadareishvili, R. Mitra, M. Mclarty und M. Amundsen, Microservice Architecture, B. MacDonald und H. Bauer, Hrsg. O’Reilly Media, 2016.]

Prinzipien1,2,3

◻ Single Responsibility
◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment
◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Ein Microservice ist in der Regel für die Realisierung genau einer
Geschäftsfunktion verantwortlich.

Entsprechend der Unix-Philosophie:
"Do One Thing and Do It Well"

Single Responsibility
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

✘

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Microservicearchitekturen streben nach einer möglichst losen Kopplung
bezüglich:

§ Austauschbarkeit
Austausch bzw. Update eines Services sollte sich nicht auf abhängige Services
auswirken (bei unveränderten Schnittstellen)

§ Kommunikation
Die Kommunikation zwischen Services sollte auf ein Minimum beschränkt werden.
Die Kommunikation verläuft durch synchronen oder asynchronen Austausch
einfacher Nachrichten.

§ Paradigma: Smart Endpoints, dumb pipes.
§ Typische Protokolle: HTTP (RESTful), AMQP, KAFKA, gRPC, …

§ Typische Nachrichtenformate: JSON, XML, Binary.

Worst Case bei zu enger Kopplung: Verteilter Monolith

Lose Kopplung, hohe Kohäsion
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

✘

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Ein Microservice enthält typischerweise alle zur Umsetzung seiner
Geschäftsfunktion relevanten Domänenkonzepte.

§ Verringert den Grad der Kopplung.

§ Verringert die Wahrscheinlichkeit, dass Änderungen an einem
Service Änderungen an anderen Services nach sich ziehen.

§ Redundanzen werden in Kauf genommen.

Lose Kopplung, hohe Kohäsion
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

✘

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Neben den relevanten Domänenkonzepten und ihrer Implementierung
umfasst jeder Microservice auch alle weiteren zu seinem Betrieb notwendigen
Ressourcen, wie bspw.:

§ Schnittstellenbeschreibungen

§ Datenbanken

§ Application- und Web-Container wie Tomcat , Jetty

§ Konfigurationen für OS-Container wie Docker,
Continuous-Integration-Pipelines (z.B. Jenkins-Pipelines) und
Build-Management-Tools wie

§ Maven oder Gradle

§ Ggf. auch Teile der grafischen Oberfläche

Ziel: Verringerung von Abhängigkeiten zwischen den Microservices
sowie den zuständigen Teams

Self-Containment
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

✘

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Self-Containment
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

✘

Varianten für die Auslieferung von grafischen Oberflächen

1. Jeder Service hat seine eigene Präsentationsschicht

2. Die Präsentation erfolgt zentral

3. Die Präsentation erfolgt komplett clientseitig

1. 2. 3.

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Der Software-Lebenszyklus eines Microservices ist unabhängig von denen
anderer Microservices

Dies beinhaltet folgende Phasen:
§ Entwicklung
§ Test

§ Bereitstellung (Deployment)
§ Betrieb

Ziel: Jeder Microservice soll autonom entwickelt, deployed und betrieben
werden können.

Unabhängigkeit und Autonomie

[S. Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O’Reilly Media, 2015.]

Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

✘

“The golden rule:
Can you make a change to a
service and deploy it by itself
without changing
anything else?“

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Für jeden Microservice sollte genau ein Team verantwortlich sein:1

§ Das Team ist nicht nur für Entwurf und Entwicklung des Microservices
verantwortlich, sondern auch für alle anderen Aspekte
(Konfiguration, Deployment, Betrieb)

§ Cross-Functional Teams, z.B. DevOps2

Single Team Ownership

1) [S . Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O’Reilly Media, 2015.]
2) [I. Nadareishvili, R. Mitra, M. Mclarty und M. Amundsen, Microservice Architecture, B. MacDonald und H. Bauer, Hrsg. O’Reilly Media, 2016.]

Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership✘
[Bild:https://martinfowler.com/
articles/microservices.html]

MS1

MS3

MS2

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

§ Microservice-Architekturen erfordern in der Regel mehrere Teams für die
Entwicklung

§ Teams können anhand der technischen Skills organisiert werden:
Zum Beispiel können alle Frontend-Entwickler zu einem Team
zusammengefasst werden
⇒ Urlaubsvertretung oder fachlicher Austausch sind so sehr einfach.

§ Die Aufteilung der Teams beeinflusst aber die Architektur.
⇒ Gesetz von Melvin Edward Conway

Single Team Ownership
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership✘

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

Conway‘s Law:
Eine Organisation kann nur eine Architektur hervorbringen kann, die ihren
Kommunikationsbeziehungen entspricht.

Belegt durch empirische Untersuchungen!

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

§ Probleme der Teambildung nach technischen Skills:

§ Die Arbeit der Teams muss eng koordiniert werden.

§ Eine Verzögerung bei einem Team beeinflusst die anderen Teams.

§ Verantwortlichkeiten können ggf. zwischen den Teams hin- und her
verschoben werden

§ Cross-funktionale Teams sind bei Microservices quasi vorgezeichnet:

§ Änderung soll möglichst nur einen Microservice betreffen.

§ Team bekommt die Verantwortung für eine bestimmte Fachlichkeit, die in
einem oder mehreren Microservices implementiert ist. (à 2 Pizza-Teams)

§ Das Team muss daher technisch breit aufgestellt sein. Es muss schließlich
Backend, Frontend und Datenbank für die Fachlichkeit verantworten.
à passt zu agilen Teams

Single Team Ownership
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership✘

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

§ Vorteile cross-funktionaler Teams:

§ Unabhängigkeit der Teams ⇒ wenig Absprachen

§ Jeder Microservice kann mit einem eigenen Technologiestack implementiert
werden.

§ Jedes Team kann die Technologie nutzen, die für das jeweilige Problem
angemessen ist.

Single Team Ownership
Prinzipien
◻ Single Responsibility

◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment

◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership✘

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Eigenscha6en

Microservices

Microservice-Architekturen legen typischerweise einen Fokus auf folgende

1) [S . Newman, Building Microservices, M. Loukides und B. MacDonald, Hrsg. O’Reilly Media, 2015.]
2) [J. Lewis und M. Fowler, “Microservices”, https://martinfowler.com/articles/microservices.html, 2014.]

3) [I. Nadareishvili, R. Mitra, M. Mclarty und M. Amundsen, Microservice Architecture, B. MacDonald und H. Bauer, Hrsg. O’Reilly Media, 2016.]

Prinzipien1,2,3

◻ Single Responsibility
◻ Lose Kopplung, hohe Kohäsion

◻ Self-Containment
◻ Unabhängigkeit und Autonomie

◻ Single Team Ownership

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Herausforderung KommunikaPon

Integra=on - Kommunika=on

§ Die Probleme von Microservices sind zum großen Teil mit den gegenseitigen
Netzwerkaufrufen verbunden.

§ Die einfachste Möglichkeit, eine monolithische Anwendung zu Microservices zu migrieren, ist
die Anwendung aufzuspalten und Methodenaufrufe zwischen Modulen (bzw. Microservices)
mit synchronen Netzwerkaufrufen zu ersetzen.

§ Eine asynchrone Umsetzung der Kommunikation bietet allerdings Vorteile wie eine geringere
Latenz und eine losere Kopplung der Microservices.
⇒ Die Schwierigkeit ist, sich von der Frage-Antwort-Interaktion loszulösen.

[H. Prinz: „Brauchen asynchrone Microservices und SCS ein Service Mesh?“, 2020
https://www.innoq.com/de/articles/2020/02/service-mesh-asynchrone-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Herausforderung KommunikaPon

Integra=on - Kommunika=on

[H. Prinz: „Brauchen asynchrone Microservices und SCS ein Service Mesh?“, 2020
https://www.innoq.com/de/articles/2020/02/service-mesh-asynchrone-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

§ Risiken bei zu kleinen oder zu großen Services
§ Netzwerkauslastung,
§ Komplexität bei Transaktionen,
§ Infrastrukturaufwand

§ Wie groß ist ein Microservice bzw. wie groß ist eine „Geschäftsfunktion“?
§ Zeilen an Code à ?
§ Komplexitätsmetriken à ?
§ Anzahl an Testfällen à ?

§ Es existiert kein quantitatives Maß für die „richtige“ Größe!

Bes+mmung der Servicegröße

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Mögliche (unscharfe) Kriterien zur Bestimmung der Größe1

§ Geschäftsfunktion
Der Microservice sollte alle zur Realisierung seiner Geschäftsfunktion relevanten
Domänenkonzepte umfassen.

§ Teamgröße
Es sollte nicht mehr als ein Team notwendig sein, um einen Microservice zu entwickeln.
Als Teamgröße werden häufig 5 – 7 Personen angegeben („Two-Pizza-Teams“).

§ Verstehbarkeit
Ein Microservice sollte zur Gänze von einem einzelnen Entwickler
verstanden werden können.

§ Ersetzbarkeit
Ein Microservice sollte leicht ersetzbar sein („Two-Week-Implementation“).

Bes+mmung der Servicegröße

1) [Eberhard Wolff: Das Microservices-Praxisbuch, Hrsg. dpunkt.verlag, 2018.]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Entwurfsmuster in Microservicearchitekturen

§ In der Regel werden bestimmte Geschäftsfunktions-unabhängige Services
benötigt, sogenannte infrastrukturelle Services.

⇒ wiederverwendbare, bewährte Lösungen für die
Erstellung von Microservicearchitekturen
(à Entwurfsmuster)

Chris Richardson:
Microservice Patterns.
Hrsg. Manning, 2018.

Beispiele:
Service Discovery, API Gateway,
Load Balancer, Cuircuit Breaker,
Authentication,Config Storage …

[https://microservices.io/patterns/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

§ Woher wissen die einzelnen Services eigentlich, wie sie die anderen Services erreichen können?

§ Service Discovery ist vergleichbar mit einer SOA-Registry.
• Services melden sich an einer zentralen Stelle unter einem Alias an.

• Andere Services können diesen Alias bei der Service Discovery anfragen und
erhalten die tatsächliche Adresse.

§ Client-side Service Discovery
• Netzwerkadresse einer Serviceinstanz wird automatisiert bei

einer Service Registry registriert.
• Sollte die Serviceinstanz terminieren, wird der “Tod” des

Service mittels Heartbeat-Mechanismus detektiert.

• Services können mithilfe einer bereitgestellten API die
Adresse anderer Serviceinstanzen bei der Registry anfragen.

• Typische Vertreter: Eureka (Spring Cloud bzw. Netflix OSS) oder Consul (HashiCorp)

Service Discovery

Bildquelle : NGINX,
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

API Gateway

Library

Friends

Geräte Suche

Player

Playlisten

API
Gateway

Übersicht

Spo$fy

Microservice
Kommunika&onskanal
Gesamtsystem

Legende

Das API Gateway fungiert für Clienten als
zentraler Zugangspunkt zum System
§ Für Clienten sind die hintergelagerten

Services versteckt, d.h. ein Client merkt u.U.
gar nicht, dass es sich um eine
Microservicearchitektur handelt.

§ API Gateways werden teilweise um weitere
Funktionalitäten ergänzt
§ Load Balancing

§ Security

§ …

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Verfügbar auf GitHub: h7ps://github.com/SeelabFhdo/SWT2-OrderSystem

Codebeispiel

https://github.com/SeelabFhdo/SWT2-OrderSystem

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Anwendungsbeispiele

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

[Stefan Zörner: Drei zentrale Entwurfsfragen bei vertikalen Anwendungsarchitekturen, Java Forum Nord. Hannover, 2018.]

Beispiel:
NeGlix

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Fazit - Silver Bullet ?!

Microservices

§ Heterogenität
Vorteil: Flexibilität in Technologie-Wahl
Nachteil: Mehr Know-how notwendig, höhere Betriebskosten, mehr Komplexität

§ Resilienz (Widerstandsfähigkeit)
Vorteil: Sicherheit gegen Infrastruktur-Ausfall
Nachteil: muss explizit dafür programmiert werden
(„Circuit Breaker“ Pattern, Auto-Reconnect, etc.)

§ Skalierbarkeit
Vorteil: höhere Entwickler-Effizienz, höhere Runtime-Performance
Nachteil: erhöhte Komplexität, Service Discovery, schwierigeres Monitoring

§ EasyDeployment
Vorteil: jeder einzelne Microservice leichter installierbar/upgradebar
Nachteil: Gesamtanwendung hat viele Abhängigkeiten

[R.S. Engelschall: „Microservices -
Architekturansatz mit großen Herausforderungen und gewissen Nebenwirkungen“, 2016]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Fazit - Silver Bullet ?!

Microservices

§ Organisatorische Ausrichtung
Vorteil: stärkerer Fokus auf fachliche Einheiten (à Conway‘s Law)
Nachteil: eventuell mehrere technische Durchstiche notwendig

§ Komponierbarkeit
Vorteil: Funktionalitäten flexibel zusammenbaubar
Nachteil: erhöhte Komplexität durch Orchestrierung/Choeographie, mehr Abhängigkeiten entstehen

§ Wiederverwendbarkeit
Vorteil: Funktionalitäten in mehreren Anwendungen, nur einmal pflegen
Nachteil: Alle Anwendungen gleichzeitig betroffen

§ Austauschbarkeit
Vorteil: Funktionalitäten getrennt austauschbar (Update/Upgrade)
Nachteil: Alle Anwendungen gleichzeitig betroffen

•

[R.S. Engelschall: „Microservices -
Architekturansatz mit großen Herausforderungen und gewissen Nebenwirkungen“, 2016]

Self Contained Systems (SCS)

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Unvollständige Auswahl großer So6waretechnik-Trends

Entwicklungs- und Architekturtrends im Zeitverlauf

1980

1985

1990

1995

2000

2005

2010

2015

2020

Prozedurale
Programmierung

Objektorientierung

Serviceorientierung
(SOA)

Komponenten-
orientierung

(KBSE)

Model Driven
Architecture

(MDA)

Broker
Architecture
(z.B. CORBA)

Micro-
services

Schichten-
architektur

Self-Contained
Systems

(SCS)

Cloud
Computing

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Self-contained System (SCS)

§ Microservices enthalten viele Freiheitsgrade, wie beispielsweise die Größe der Services, die
Art der Kommunikation und Integration oder das Schneiden der Services

§ Self-contained Systems (SCSs) sind Microservices mit einer Reihe konkreter Festlegungen:

§ Jedes SCS ist eine eigenständige Web-Anwendung inkl. Daten, Logik und Code zur Darstellung
der Web-Schnittstelle.

§ Jedes SCS soll seine eigene UI haben und sich auch keinen Geschäftscode mit anderen SCS teilen.

§ Ein SCS kann auch eine Service-API haben, um die Logik für andere SCS oder mobile Clients
anzubieten.

§ Jedes SCS wird von einem Team verantwortet.

§ Die Kommunikation mit Fremdsystemen und anderen SCSs ist nach Möglichkeit asynchron.
à Entkopplung

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

IntegraPon

Self-contained System (SCS)

§ SCSs können zu Anwendungen zusammengesetzt werden.

§ Neben der asynchronen Kommunikation wird primär eine Integration auf Ebene der
Weboberflächen empfohlen. Beispielsweise über

§ Weblinks, die ein Nutzer allerdings explizit anklicken muss; oder über

§ JavaScript-Code, der eine Seite nach bestimmten Links scannt und die Links durch den Inhalt der
referenzierten Seite ersetzt; oder durch

§ Features von Web-Servern wie Server-Side Includes, d.h. der Web Server ersetzt selbst
Teile der Web-Seite durch die referenzierten Inhalte.

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Mikro- und Makro-Architektur

Self-contained System (SCS)

§ SCS können größer als Microservices sein (à komplette Web-Anwendung)

§ ein SCS kann intern aus mehreren Microservices zusammengesetzt sein
⇒ mehrere kleinere Deployment-Einheiten
⇒ Komplexität steigt, weil diese Instanzen alle verwaltet bzw. betrieben werden müssen
⇒ Aufteilung ist also ein Trade-Off

§ Bei der Architektur eines SCS unterscheidet man die Mikro- und Makro-Architektur:
• Mikro-Architektur ⬄ Entscheidungen, die jedes Team für sein SCS selber treffen kann.

• Makro-Architektur ⬄ Entscheidungen, die global für alle Teams und SCSs festgelegt werden.

§ Nur wenige Entscheidungen müssen zwingend in der Makro-Architektur getroffen werden
wie beispielsweise das Protokoll für die Kommunikation der SCSs untereinander oder die
Technologien für die UI-Integration.

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Abgrenzung gegenüber Microservices

§ Beide Ansätze:
§ Aufteilung eines Systems in kleinere (Service-)Einheiten auf.
§ Ein Team verantwortet Komponente (Microservice oder SCS)

§ SCSs sind im Vergleich zu Microservices eher grobgranular
à komplette Webanwendungen

§ SCS fordern noch stärker die lose Kopplung der
Komponenten

Self-contained System (SCS)

[Eberhardt Wolff: „Services: SOA, Microservices und Self-contained Systems“, 2016
https://www.innoq.com/de/articles/2016/11/services-soa-microservices-scs/]

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Unvollständige Auswahl großer So6waretechnik-Trends

Entwicklungs- und Architekturtrends im Zeitverlauf

1980

1985

1990

1995

2000

2005

2010

2015

2020

Prozedurale
Programmierung

Objektorientierung

Serviceorientierung
(SOA)

Komponenten-
orientierung

(KBSE)

Model Driven
Architecture

(MDA)

Broker
Architecture
(z.B. CORBA)

Micro-
services

Schichten-
architektur

Self-Contained
Systems

(SCS)

Cloud
Computing

SWT2 Architekturstile © Prof. Dr. Sabine Sachweh

Platzhalter für ein Bild

Abschlussbemerkung

Lohnt es sich einen Sportwagen zu kaufen, um damit morgens zum
300m entfernten Bäcker zu fahren?

Architekturs+le III
Microservice Architecture (MSA)
Self-contained Systems (SCS)

Architekturs+le III ✓

