UEB 09
1

a

Eine Zugriffskontrollmatrix ist ein Modell, das in Computersystemen zur Darstellung der
Rechte von einzelnen Benutzern (in diesem Fall Alice und Bob) auf bestimmte Ressourcen
(in diesem Fall die drei Dateien) verwendet wird.

Die Matrix kdnnte so aussehen:

Benutzer | Datei hello world.txt check world.sh print hello world.sh

Alice R, W R, X X
Bob R R, W -
Hinweis:

R steht fir Lesen (Read)
W steht fur Schreiben (Write)
X steht fur Ausfuhren (Execute)

"-" zeigt an, dass kein Zugriff gewahrt wurde

In dieser Matrix kann Alice die Datei "hello world.txt" lesen und schreiben, die Datei "check
world.sh" lesen und ausfiihren, und sie kann die Datei "print hello world.sh™" ausfiihren. Bob
hingegen kann die Datei "hello world.txt" lesen, kann in "check world.sh" lesen und
schreiben, aber hat keinen Zugriff auf "print hello world.sh".

b)

Access Control Lists (ACLSs) sind Listen, die auf jeder Ressource basieren und definieren,
welcher Benutzer welche Zugriffsrechte auf die Ressource hat. Hier sind die ACLs fir die
genannten Dateien:

hello world.txt

Alice: Lesen, Schreiben
Bobh: Lesen

check world.sh

Alice: Lesen, Ausfiihren



Bob: Lesen, Schreiben
print hello world.sh

Alice: Ausfuhren
Bob: Kein Zugriff

c)

Im Gegensatz zu ACLs, die auf Ressourcen basieren, basieren Capabilities auf Benutzern.
Sie definieren, welche Ressourcen von einem bestimmten Benutzer zugegriffen werden
kénnen und welche Operationen ausgefuhrt werden kénnen. Hier sind die Capabilities fur
Alice und Bob:

Alice

hello world.txt: Lesen, Schreiben
check world.sh: Lesen, Ausfuhren

print hello world.sh: Ausfiihren
Bob

hello world.txt: Lesen
check world.sh: Lesen, Schreiben
print hello world.sh: Kein Zugriff

Bei beiden Modellen handelt es sich um verschiedene Ansétze zur Darstellung von
Zugriffsrechten in Computersystemen, wobei ACLs den Zugriff auf der Basis einzelner
Ressourcen steuern und Capabilities auf Benutzerbasis arbeiten.

2

Um die Situation mit Linux-Dateisystemberechtigungen umzusetzen, missen wir zuerst die
Dateien erstellen und dann die entsprechenden Berechtigungen setzen. Bitte beachten Sie,
dass in Linux Dateinamen ohne Leerzeichen Ublicher sind. Ich werde Unterstriche anstelle

von Leerzeichen verwenden, um den Prozess reibungslos zu gestalten.

a) Erstellen Sie eine Datei hello_world.txt mit dem Inhalt "Hello, world!".

"Hello, world!" > hello_world.txt

b) Erstellen Sie eine Datei check_world.sh mitdem Inhalt cat hello_world.txt | grep
-q ’world’ && echo "’world’ found".

"cat hello_world.txt | grep -q 'world' && echo "'world' found"" >



check_world.sh

c) Erstellen Sie eine Datei print_hello_world.sh mitdem Inhalt cat hello_world.txt.

"cat hello_world.txt" > print_hello_world.sh

Nun setzen wir die Berechtigungen entsprechend der Anforderungen. In Linux
reprasentieren die Ziffern 4, 2 und 1 die Berechtigungen zum Lesen, Schreiben und
Ausfuhren. Der Eigentimer (user), die Gruppe (group) und andere (other) haben jeweils
eine dieser Ziffern.

Zum Beispiel: Die Berechtigung 7 (4+2+1) bedeutet, dass der Eigentimer lesen, schreiben
und ausfuhren kann. Die Berechtigung 6 (4+2) bedeutet, dass der Eigentimer lesen und
schreiben kann, aber nicht ausfihren.

Gemal der Zugriffskontrollmatrix:

Alice kann hello world.txt lesen und schreiben, check world.sh lesen und
ausfihren und print_hello_world.sh ausfuhren.

Bob kann hello_world.txt lesen, check_world.sh lesen und schreiben und hat
keinen Zugriff auf print_hello_world.sh.

Nehmen wir an, Alice und Bob gehdren zur gleichen Gruppe, dann kdnnten die
Berechtigungen wie folgt gesetzt werden:

640 hello_world.txt
750 check_world.sh

700 print_hello_world.sh

d) Erstellen Sie die Benutzer Alice und Bob mithilfe des Werkzeugs adduser .

adduser alice
adduser bob

Bei diesen Befehlen werden Sie nach weiteren Informationen gefragt, wie z.B. dem
Passwort fur die Benutzer.

e) Erstellen Sie eine Gruppe shared mithilfe des Werkzeugs addgroup .

addgroup shared

f) Fugen Sie Alice und Bob zur Gruppe shared hinzu mithilfe des Werkzeugs usermod .



-a -G shared alice
-a -G shared bob

Der Parameter -a steht fur ‘append’ (hinzufigen) und -G steht fur 'groups' (Gruppen). Also
fugt usermod -a -G den Benutzer zu der angegebenen Gruppe hinzu, ohne ihn aus
anderen Gruppen zu entfernen.

g) Wir haben bereits die Dateien erstellt und nun missen wir die entsprechenden
Berechtigungen setzen. Da wir die Benutzer und die Gruppe erstellt haben, missen wir
auch die Eigentimerschaft der Dateien auf Alice setzen und die Gruppe der Dateien auf
shared setzen:

alice:shared hello_world.txt
alice:shared check_world.sh
alice:shared print_hello_world.sh

Jetzt setzen wir die Berechtigungen entsprechend der Anforderungen.

640 hello_world.txt
760 check_world.sh

700 print_hello_world.sh

h) Testen Sie die von Ihnen erstellten Dateisystemberechtigungen.

Wir kénnen testen, ob die Berechtigungen korrekt gesetzt sind, indem wir versuchen, die
Dateien als Benutzer Alice und Bob zu lesen, zu schreiben und auszufiihren. Angenommen,
die Passworter fur Alice und Bob sind jeweils alicepassword und bobpassword, dann
konnen wir die su (switch user) Befehle verwenden, um die Tests durchzufihren.

Als Alice:

- alice -c "cat hello_world.txt"
- alice -c "echo 'Goodbye, world!' >> hello_world.txt"

- alice -c "./check_world.sh"

- alice -c "./print_hello_world.sh"

Als Bob:



su - bob -c "cat hello_world.txt" # Sollte
"Hello, world!" ausgeben

su - bob -c "echo 'Goodbye, world!' >> hello_world.txt" # Sollte
Fehler ausgeben, da Bob nicht schreiben darf
su - bob -c "./check_world.sh" # Sollte

"'world' found" ausgeben, da 'world' in der Datei hello_world.txt
existiert

su - bob -c "./print_hello_world.sh" # Sollte
Fehler ausgeben, da Bob nicht auf die Datei zugreifen darf

einen

einen



