
Streams

Prof. Dr. Martin Hirsch Streams 179 / 355

Motivation)

Fließband (pipeline

Produktion einer Waschmaschine an einem Fließband
Personen arbeiten parallel mit jeweils anderer Tätigkeit

Prof. Dr. Martin Hirsch Streams 180 / 355

Motivation

Unix Pipes
Der Pipe-Mechanismus wurde Anfang der 70er-Jahre in Unix eingeführt
Er gestattet den Austausch von Daten zwischen zwei Programmen
Damit läßt sich eine Kette von Programmen zusammenbauen:
jedes Programm nimmt Daten entgegen, verarbeitet sie und reich seine Ausgaben
an das nächste Programm weiter(Pipeline-Verarbeitung)
Die Programme laufen dabei (soweit möglich) parallel

Prof. Dr. Martin Hirsch Streams 181 / 355

Ziel in Java

Zu den größten Vorzügen von Streams zählt die Möglichkeit, die Code-Ausführung
intern zu optimieren, beispielsweise durch die parallele Ausführung von Teilaufgaben
Streams könnten also zu effizienterem Code führen, ohne dass sich die
Programmierer um die Entwicklung nebenläufiger Algorithmen kümmern müssen
Stream-Schnittstelle zur Verarbeitung von Collection-Elements durch
Lambda-Ausdrücke

Prof. Dr. Martin Hirsch Streams 182 / 355

Streams seit Java 8 . . .

Ströme sind eine (eventuell unendlich lange) Folge von Datenströmen
Die Datenobjekte eines Stroms werden von Methoden verarbeitet und können dann
zur nächsten Methode weitergereicht werden (Pipeline-Verarbeitung)
Das Stromkonzept von Java hat damit große Ähnlichkeiten zu den Unix-Pipes

List<String> wordList = Arrays.asList("achten", "auch", "zum", "an", "bei", "aber", "vor")
wordList.stream()
.filter(s -> s.startsWith("a"))
.mapToInt(s -> s.length())
.sorted()
.forEach(n -> System.out.println(n + ","));

System.out.println("");

Prof. Dr. Martin Hirsch Streams 183 / 355

Aufbau eines Streams . . .

Mit einer initialen Operation wird ein Strom erzeugt.
Mit (einer oder mehreren) intermediären Operationen werden Ströme
transformiert. Rückgabewert ist wieder ein Strom.
Mit einer terminale Operation wird der Strom abgeschlossen. Terminale
Operationen liefern ein Resultat (aber keinen Strom) zurück oder haben keinen
Rückgabewert und eventuell einen Seiteneffekt.
Intermediäre und terminale Operationen sind im Paket java.util.stream
festgelegt

Prof. Dr. Martin Hirsch Streams 184 / 355

Verzögerte Generierung der Streams

Ströme werden nie komplett im Voraus generiert. Ströme können prinzipiell
unendlich lang werden
Es werden nur solange Daten für den Strom generiert, wie die terminale Operation
noch Daten benötigt. Der Strom wir verzögert generiert (lazy evaluation)

Prof. Dr. Martin Hirsch Streams 185 / 355

Verzögerte Generierung der Streams

new Random().ints()
.map(n -> Math.abs(n)%1000)
.peek(System.out::println)
.anyMatch(n -> 10 <= n && n < 20)

Die initiale Operation ints der Klasse Random erzeugt prinzipiell unendlichen Strom
von Zufallszahlen
Die intermediäre map-Operation transformiert die Zufallszahlen in das Intervall
[0,1000)
Die intermediäre peek-Operation gibt jede Zahl aus und reicht sie weiter
Die terminale Operation anyMatch bricht mit Rückgabe von true ab, sobald eine
Zahl im Intervall [10, 20) liegt

Prof. Dr. Martin Hirsch Streams 186 / 355

Ströme können aus zahlreichen „Datenbehältern der Java
API“ erzeugt werden

Beispiele
Collection.stream(): Instanz-Methode zum Erzeugen eines sequentiellen
Stroms
Collection.parallelStream(): Instanz-Methode zum Erzeugen eines
parallelen Stroms
Arrays.stream(T[] a): statische Methode zum Erzeugen eines Stroms aus dem
Feld a.
BufferedReader.lines(): Instanz-Methode liefert einen Strom bestehend aus
Zeilen

Prof. Dr. Martin Hirsch Streams 187 / 355

Ströme können aus zahlreichen „Datenbehältern der Java API
“erzeugt werden

List<String> wordList =Arrays.asList("achten", "auch", "zum", "an", "bei", "aber", "vor");
Stream<String> s1 = wordList.stream(); // Strom mit den Strings aus wordList

int[] a = new int[]{1,2,3,4,5};
IntStream s0 = Arrays.stream(a);

BufferedReader in = new BufferedReader(new FileReader("test.txt"));
Stream<String> s2 = in.lines(); // Strom mit Zeilen der Datei test.txt

Prof. Dr. Martin Hirsch Streams 188 / 355

Initiale Stream-Operationen aus Paket Stream

Beispiel für statische Fabrik-Methoden
empty(): Leerer Strom
of(...): Strom mit vorgegebenen Elementen
generate(s): Generiere Strom durch wiederhotels Aufrufen von s: s(), s(),
s(), ...

iterate(a,f): Generiere Strom durch Iteration: a, f(a), f(f(a)), ...

range(a,b): Generiere Integer-Strom von a einschließlich bis b ausschließlich

Prof. Dr. Martin Hirsch Streams 189 / 355

Initiale Stream-Operationen aus Paket Stream

IntStream s3 = IntStream.of(1, 2, 3, 4); // Strom mit den Zahlen 1, 2, 3, 4

IntStream s4 = IntStream.iterate(1, x -> 2*x); // Unendlicher Strom mit allen 2er Potenzen

// Unendlicher Strom mit sin(x), wobei x eine Zufallszahl aus [0, 1) ist
DoubleStream s5 = DoubleStream.generate()(-> Math.random()));

IntStream s6 = IntStream.range(1, 10); // Strom mit int-Zahlen von 1 bis 9 (einschl.)

Prof. Dr. Martin Hirsch Streams 190 / 355

Initiale Stream-Operationen aus Klasse Random

doubles(): Strom mit unendlich vielen zufälligen double-Zahlen aus [0,1)
ints(): Strom mit unendlich vielen zufälligen int-Zahlen

IntStream s1 = new Random().ints();
DoubleStream s2 = new Random().doubles();

Prof. Dr. Martin Hirsch Streams 191 / 355

Intermediäre Stream-Operationen

Intermediäre Operationen transformieren Ströme
Rückgabewert ist wieder ein Strom
Damit ist die typische Verkettung von mehreren Operationen möglich

strom.op1(...).op2(...)...opN();

Prof. Dr. Martin Hirsch Streams 192 / 355

Intermediäre Stream-Operationen

filter(pred): lasse nur Elemente x im Strom, für die dsaPrädikat pred(x) zutrifft
map(f): ersetze jedes Element x im Strom durch f(x)
flatMap(f): ersetze jedes Element x im Strom durch einen von f(x) erzeugten
Strom
peek(action): führe für jede Methode die rückgabelose Funktion action druch.
sorted(): sortiere die Elemente im Strom
distinct(): entferne Duplikate aus dem Strom
skip(n): entferne die ersten n Elemente aus dem Strom
limit(n): begrenze den Strom auf maximal n Elemente

Prof. Dr. Martin Hirsch Streams 193 / 355

Beispiel mit map und flatMap

/* Datei test.txt:
Dies ist eine
kleine
Test Datei
*/
BufferedReader in = new BufferedReader(new FileReader("test.txt"));
in.lines()
.peek(System.out::println)
.flatMap(line -> Arrays.stream(line.split("+")))
.map(s -> s.toUpperCase())
.forEach(System.out::println);

/* Ausgabe:
DIES
IST
EINE
KLEINE
TEST
DATEI
*/

Prof. Dr. Martin Hirsch Streams 194 / 355

Beispiel: Stabiles Sortieren nach zwei Schlüsseln
Personen sind nach dem Geburtsjahr und innerhalb einer Jahrgangsstufe
alphabetisch sortiert

public class Test {
public static void main(String[] args) {

List<Person> persList = new LinkedList<>();
persList.add(new Person("Klaus", 1961));
persList.add(new Person("Peter", 1959));
persList.add(new Person("Maria", 1959));
persList.add(new Person("Petra", 1961));
persList.add(new Person("Albert", 1959));
persList.add(new Person("Anton", 1961));
persList.add(new Person("Iris", 1959));
persList.stream()

.sorted(Comparator.comparing(Person::getName))

.sorted(Comparator.comparing(Person::getGeb))

.forEach(System.out::println);
}

}

Prof. Dr. Martin Hirsch Streams 195 / 355

Terminale Operationen

Mit einer terminalen Operation wird der Strom abgeschlossen
Terminale Operationen liefern ein Resultat zurück (keinen Strom) oder haben keinen
Rückgabewert und eventuell einen Seiteneffekt

value = strom.terminalOperation(...);

strom.terminalOperation(...);

Prof. Dr. Martin Hirsch Streams 196 / 355

Logische Operationen

anyMatch(pred): liefert true, falls pred(x) für ein Element x des Stroms zutrifft
allMatch(pred): liefert true, falls pred(x) für alle Elemente x des Stroms zutrifft
noneMatch(pred): liefert true, falls pred(x) für kein Element x des Stroms zutrifft

// gibt solange zufaellige Zahlen x aus, bis ein x 2 [10,20). Rueckgabe true
new Random().ints()
.map(n -> Math.abs(n)%1000)
.peek(System.out::println)
.anyMatch(n -> 10 <= n && n < 20)

// gibt solange zufaellige Zahlen x aus, bis ein x /2 [10,20). Rueckgabe true
new Random().ints()
.map(n -> Math.abs(n)%1000)
.peek(System.out::println)
.allMatch(n -> 10 <= n && n < 10000)

Prof. Dr. Martin Hirsch Streams 197 / 355

Reduktions-Operationen

reduce(e, op): reduziert einen Strom x0, x1, x2, . . . zu dem Wert
(. . . (((e op x0) op x1) op x2) op Dabei ist op ein 2-stelliger assoziativer Operator
und e das neutrale Element bzgl. op.
count(): Anzahl der Elemente im Strom
min(cmp) bzw. max(cmp): Liefert größtes bzw. kleinstes Element des Stroms
bezüglich der Comparator-Funktion cmp.

Prof. Dr. Martin Hirsch Streams 198 / 355

Reduktions-Operationen

int sum = InStream.range(1,11).reduce(0, (x,y) -> x+y);
System.out.println(sum);

Prof. Dr. Martin Hirsch Streams 199 / 355

Beispiel: harmonisches Mittel mit reduce-Operation

x̄harm = n
1

x0
+ 1

x1
+...+ 1

xn�1

Anwendung: auf einer Teilstrecke von jeweils 1km werden folgende Geschindigkeiten
gefahren: 50, 100, 80, 120, 90 km/h. Dann ist die Durchschnittsgeschwindigkeit der
Gesamtstrecke gerade das harmonische Mittel der Einzelgeschwindigkeiten:
vharm = 80, 71km/h.

double[] v_array = {50,100,80,120,90};
double v_harm = Arrays.stream(v_array).reduce{0,(s,v) -> s + 1/v);
v_harm = v_array.length / v_harm;
System.out.println(v_harm);

Prof. Dr. Martin Hirsch Streams 200 / 355

Statistik-Operationen für Basisdatentypen

count(), sum(), min(), max(), sverage(): Liefert Anzahl, Summe,
Minimum, Maxium bzw. Durchschnittswert der Elemente eines Stroms zurück
summaryStatistics(): Liefert einen Wert vom Typ IntSummaryStatistics(bzw.
DoubleIntSummaryStatistics, ...) zurückm der Anzahl, Summe, Minimum, Maximum
und Durchschnittswert umfasst.

Prof. Dr. Martin Hirsch Streams 201 / 355

Beispiel: Zeilenstatistik für eine Datei
test.txt
Wir werden fünfzig! Die Fachhochschule Dortmund feiert ihr 50-jähriges Bestehen!
Dieses besondere Jubiläum wollen wir mit Ihnen zusammen ausgiebig würdigen. Und
weil wir sehr viel vorhaben, füllt unser umfangreiches Programm sogar ein ganzes Jahr
–von August 2021 bis Juli 2022.

BufferedReader in = new BufferedReader(new FileReader("test.txt"));
DoubleSummaryStatistics stat = in.lines().peek(System.out::println).mapToDouble(s -> s.

length()).summaryStatistics();
System.out.println(stat);

Ausgabe
DoubleSummaryStatisticscount=5, sum=276,000000, min=19,000000,
average=55,200000, max=90,000000

Prof. Dr. Martin Hirsch Streams 202 / 355

Terminale Operationen collect und forEach

Collect
collect(collector): Kann benutzt werden, um Elemente des Stroms in einem
Container aufzusammeln. Beispielsweise werden mit folgender Anweisung alle Elemente
eines String-Strom in einer Liste abgespeichert:
List<String> asList = stringStream.collect(Collectors.toList());

forEach
forEach(action): führe für jedes Element des Strom die Consumer-Funktion action
(einstellige Funktion ohne Rückgabewert) durch

Prof. Dr. Martin Hirsch Streams 203 / 355

Beispiel zu collect-Operation

List<Person> persList = new LinkedList<>();
persList.add(new Person("Klaus", 1961));
persList.add(new Person("Anton", 1959));
persList.add(new Person("Maria", 1959));
persList.add(new Person("Petra", 1961));
persList.add(new Person("Anton", 1973));
persList.add(new Person("Peter", 1970));
persList.add(new Person("Anton", 1961));
persList.add(new Person("Klaus", 1959));

// Sortiere die Namen alphabetisch und entferne die Duplikate
List<String> nameList = persList.stream().map(Person::getName).sorted(Comparator.

naturalOrder()).distinct().collect(Collectors.toList());

System.out.println(nameList);

Prof. Dr. Martin Hirsch Streams 204 / 355

Parallele Streams

Ströme können parallelisiert werden
Mit einem Mehrkernprozessor kann damit die Performance verbessert werden

// sequentiell
int max = 10_000_000;
long numberOfPrimes = IntStream.range(1, max).filter(isPrime).count();

// parallel
int max = 10_000_000;
long numberOfPrimes = IntStream.range(1, max).parallel().filter(isPrime).count();

Prof. Dr. Martin Hirsch Streams 205 / 355

Zum experimentieren

public class Parallel {
public static void main(String[] args) {

int max = 100000;
PrimeCounter pc = new PrimeCounter();
long time = -System.currentTimeMillis();
System.out.println(pc.countPrimes(max));
System.out.println(time + System.currentTimeMillis() + "ms");

}
public static class PrimeCounter {

public long countPrimes(int max) {
return IntStream.range(1, max).parallel().filter(this::isPrime).count();

}
private boolean isPrime(int number) {

return IntStream.range(2, number).allMatch(x -> (number % x) != 0);
}

}
}

Prof. Dr. Martin Hirsch Streams 206 / 355

Nicht-deterministische Reihenfolge bei parallelen Streams

title
Bei der parallelen Bearbeitung eines Stroms ist die Reihenfolge, in der auf die
Elemente des Stromszugegriffen wird, nicht vorhersehbar
Elemente von 1 bis 20 werden in einer nicht vorhersehbaren Reihenfolge
ausgegeben, z.B.: 13, 15, 14, 12, 11, 3, 5, 4, 16, 8, 6, 1, 10, 20, 18, 9 ,2, 19, 17, 7

IntStream.range(1, 21).parallel().forEach(System.out::print);

Prof. Dr. Martin Hirsch Streams 207 / 355

Vorsicht bei zustandsbehafteten Funktionen

Vorsicht bei Funktionen, die auf nicht-lokale Datenstrukturen zugreifen
(zustandsbehaftete Funktionen)
Das Ergebnis der Stromverarbeitung kann vom zeitlichen Ablauf der
zustandsbehafteten Funktionsaufrufe abhängen (race condition)

public class MutableInt {
int n = 0;
public int get() {

return n;
}
public void add(int x) {

n += x;
}}
public class Parallel2 {

public static void main(String[] args) {
MutableInt sm = new MutableInt();
IntStream.range(1, 1001).parallel().forEach(x ->

sm.add(x));
System.out.println(sm.get());

}}

Es wird eine zustandsbehaftete
Funktion aufgerufen, die auf die mutable
nicht-lokale Variable sum zugreift.
(Variable sum ist außerhalb des
Lambda-Ausdrucks definiert)

Prof. Dr. Martin Hirsch Streams 208 / 355

Race Conditions

Race Condition: Die Berechnung von sum = 1 + 2 + . . .+ 1000 = 500500 hängt vom
zeitlichen Ablauf der sum.add(x)-Aufrufe ab

Prof. Dr. Martin Hirsch Streams 209 / 355

Vermeidung von Race Conditions mit synchronisierten Datentypen

AtomicInteger kapselt einen Integer-Wert und führt Änderungen des
Integer-Werts atomar durch
keine Race Conditions
Programm wird durch Synchronisierung langsamer

public static void main(String[] args) {
AtomicInteger sm = new AtomicInteger(0);
IntStream.range(1, 1001).parallel().forEach(x -> sm.addAndGet(x));
System.out.println(sm.get());

}

Prof. Dr. Martin Hirsch Streams 210 / 355

Bessere Lösung: auf zustandsbehaftete Funktionen verzichten!

// Es wird die zustandslose Funktion sum() aufgerufen
int sum =IntStream.range(1, 1001).parallel().sum();
System.out.println(sum);

Prof. Dr. Martin Hirsch Streams 211 / 355

	Organisation
	Allgemein
	Literatur

	Literatur
	Literatur
	Literatur
	Java
	Einstieg Java - Pitfalls
	Wiederholung Java
	Exkurs: Arten von Klasse
	Hilfreiche Erweiterungen

	Generics - Klassen und Methoden
	Grundlagen
	Wildcards
	Kovarianz, Kontravarianz, Invarianz

	Exceptions
	Java Fehlerbehandlung
	Assertions

	Lambda–Ausdrücke
	Lambda Allgemein
	Entstehungsgeschichte Defaultmethoden

	Collections
	Motivation
	Das Collection-Framework
	Probleme bei Collection
	Map-Schnittstelle

	Streams
	Dateien und Verzeichnisse
	Serialisierung
	Parallelprogrammierung in Java
	Threads
	Das Concurrent-Paket

	JavaFX
	Grundlagen JavaFX
	Properties und Bindings

	scala
	Einführung in Scala
	Funktionale Programmierung mit LISP
	Scala

	Shorts: Imperative Programmierung versus deklarative Programmierung
	Funktionale Programmierung am Beispiel Scala

	C
	Einführung in C

