Streams

=} = = = 1PN G4
Prof. Dr. Martin Hirsch Streams

Motivation)

FlieBband (pipeline

1y 1\
1

@ Produktion einer Waschmaschine an einem Flief3band
@ Personen arbeiten parallel mit jeweils anderer Tatigkeit

Prof. Dr. Martin Hirsch Streams 180/355

Motivation
Unix Pipes

@ Der Pipe-Mechanismus wurde Anfang der 70er-Jahre in Unix eingefihrt
@ Er gestattet den Austausch von Daten zwischen zwei Programmen

@ Damit IaBt sich eine Kette von Programmen zusammenbauen:

jedes Programm nimmt Daten entgegen, verarbeitet sie und reich seine Ausgaben

an das nachste Programm weiter(Pipeline-Verarbeitung)
@ Die Programme laufen dabei (soweit mdglich) parallel

Pipe-Symbol

1s -R Programme | grep "\.java$" | sort

Mit 1s wird eine Liste aller
Dateinamen im Verzeichnis
Programme und dessen

=

Mit grep werden die
Dateinamen, die mit
".java" enden,

=

Mit sort wird die Ausgabe
von grep entgegengenommen,
sortiert und auf die Konsole

Unterverzeichnisse erzeugt. herausgesucht. ausgegeben.
v
Prof. Dr. Martin Hirsch Streams 181/355

Ziel in Java

@ Zu den gréBten Vorziigen von Streams z&hlt die Méglichkeit, die Code-Ausfuhrung
intern zu optimieren, beispielsweise durch die parallele Ausflihrung von Teilaufgaben

@ Streams kdnnten also zu effizienterem Code flihren, ohne dass sich die
Programmierer um die Entwicklung nebenlaufiger Algorithmen kimmern mussen

@ Stream-Schnittstelle zur Verarbeitung von Collection-Elements durch
Lambda-Ausdriicke

Prof. Dr. Martin Hirsch Streams 182/355

Streams seit Java 8 . ..

@ Stréme sind eine (eventuell unendlich lange) Folge von Datenstrémen
@ Die Datenobjekte eines Stroms werden von Methoden verarbeitet und kénnen dann
zur nachsten Methode weitergereicht werden (Pipeline-Verarbeitung)

@ Das Stromkonzept von Java hat damit groBe Ahnlichkeiten zu den Unix-Pipes

List<String> wordList = Arrays.asList ("achten", "auch", "zum

wordList.stream()
.filter(s -> s.startsWith("a"))

.mapToInt (s —> s.length())

.sorted ()
.forEach(n -> System.out.println(n + ","));
System.out.println("");
Erzeuge aus Reiche alle Worter Ersetze Wérter Sortiere Gib Wort-
Worterliste ~ [=5){ weiter, die mit"a" |E=| durch ihre == | Wort- | ==)| langen aus:
einen Strom. beginnen. Wortlangen. léngen. 2,4,4,6,

W, Tzm, "bei", Ueloiet,, Tsemel)

v

Prof. Dr. Martin Hirsch Streams 183/355

Aufbau eines Streams ...

@ Mit einer initialen Operation wird ein Strom erzeugt.

@ Mit (einer oder mehreren) intermedidren Operationen werden Stréme
transformiert. Rickgabewert ist wieder ein Strom.

@ Mit einer terminale Operation wird der Strom abgeschlossen. Terminale
Operationen liefern ein Resultat (aber keinen Strom) zurlick oder haben keinen
Rickgabewert und eventuell einen Seiteneffekt.

@ Intermediare und terminale Operationen sind im Paket java.util.stream

festgelegt

=) Strom

Prof. Dr. Martin Hirsch Streams 184/355

Verzdgerte Generierung der Streams

@ Stréme werden nie komplett im Voraus generiert. Stréme kdénnen prinzipiell
unendlich lang werden

@ Es werden nur solange Daten fir den Strom generiert, wie die terminale Operation
noch Daten benétigt. Der Strom wir verzégert generiert (lazy evaluation)

Prof. Dr. Martin Hirsch Streams 185/355

Verzdgerte Generierung der Streams

new Random() .ints ()
.map (n —> Math.abs(n)%1000)
.peek (System.out: :println)
.anyMatch(n -> 10 <= n && n < 20)

@ Die initiale Operation ints der Klasse Random erzeugt prinzipiell unendlichen Strom
von Zufallszahlen

@ Die intermediare map-Operation transformiert die Zufallszahlen in das Intervall
[0,1000)
@ Die intermedidre peek-Operation gibt jede Zahl aus und reicht sie weiter

@ Die terminale Operation anyMat ch bricht mit Riickgabe von true ab, sobald eine
Zahl im Intervall [10, 20) liegt

Prof. Dr. Martin Hirsch Streams 186/355

Strome kdnnen aus zahlreichen ,Datenbehéaltern der Java
API“ erzeugt werden

Beispiele

@ Collection.stream(): Instanz-Methode zum Erzeugen eines sequentiellen
Stroms

@ Collection.parallelStream (): Instanz-Methode zum Erzeugen eines
parallelen Stroms

@ Arrays.stream (T[] a): statische Methode zum Erzeugen eines Stroms aus dem
Feld a.

@ BufferedReader.lines (): Instanz-Methode liefert einen Strom bestehend aus
Zeilen

Prof. Dr. Martin Hirsch Streams 187/355

Strome kdnnen aus zahlreichen ,Datenbehéaltern der Java API
“erzeugt werden

List<String> wordList =Arrays.asList ("achten", "auch", "zum", "an", "bei", "aber", "vor");
Stream<String> sl = wordList.stream(); // Strom mit den Strings aus wordList

int[] a = new int([]{1,2,3,4,5};
IntStream s0 = Arrays.stream(a);

BufferedReader in = new BufferedReader (new FileReader ("test.txt"));
Stream<String> s2 = in.lines(); // Strom mit Zeilen der Datei test.txt

Prof. Dr. Martin Hirsch Streams 188/355

Initiale Stream-Operationen aus Paket Stream

Beispiel fur statische Fabrik-Methoden
@ empty () : Leerer Strom

@ of (...):Strom mit vorgegebenen Elementen
@ generate (s): Generiere Strom durch wiederhotels Aufrufenvon s: s (), s (),
s (),

@ iterate (a, £): Generiere Strom durch lteration: a, f(a), f(f(a)),
@ range (a, b) : Generiere Integer-Strom von a einschlieBlich bis b ausschlieBlich

Prof. Dr. Martin Hirsch Streams 189/355

Initiale Stream-Operationen aus Paket Stream

IntStream s3 = IntStream.of (1, 2,

IntStream s4 = IntStream.iterate (1,

// Unendlicher Strom mit sin(x),
DoubleStream s5 =

IntStream s6 = IntStream.range(l,

3, 4); // Strom mit den Zahlen 1, 2, 3,

X —> 2%X);

wobel x eine Zufallszahl aus [0, 1) ist

10) ;

DoubleStream.generate() (—> Math.random()));

// Strom mit int-Zahlen von 1 bis 9

4

(einschl.)

// Unendlicher Strom mit allen 2er Potenzen

Martin Hirsch

Streams

N

Initiale Stream-Operationen aus Klasse Random

@ doubles () : Strom mit unendlich vielen zufélligen double-Zahlen aus [0,1)
@ ints (): Strom mit unendlich vielen zufalligen int-Zahlen

IntStream sl = new Random () .ints () ;
DoubleStream s2 = new Random () .doubles () ;

Prof. Dr. Martin Hirsch Streams 191/355

Intermediare Stream-Operationen

@ Intermediare Operationen transformieren Stréme
@ Ruckgabewert ist wieder ein Strom
@ Damit ist die typische Verkettung von mehreren Operationen mdéglich

strom.opl(...).op2(...)...0pN();

Prof. Dr. Martin Hirsch Streams 192/355

Intermediare Stream-Operationen

@ filter (pred):lasse nur Elemente x im Strom, fir die dsaPradikat pred(x) zutrifft
map (f) : ersetze jedes Element x im Strom durch f(x)

flatMap (f): ersetze jedes Element x im Strom durch einen von f(x) erzeugten
Strom

peek (action) : flhre fir jede Methode die riickgabelose Funktion action druch.
sorted () : sortiere die Elemente im Strom

distinct (): entferne Duplikate aus dem Strom

skip (n) : entferne die ersten n Elemente aus dem Strom

limit (n):begrenze den Strom auf maximal n Elemente

Prof. Dr. Martin Hirsch Streams 193/355

Beispiel mit map und flatMap

/* Datei test.txt:
Dies ist eine
kleine
Test Datei
*/
BufferedReader in = new BufferedReader (new FileReader ("test.txt"));
in.lines ()
.peek (System.out: :println)
.flatMap (line -> Arrays.stream(line.split ("+")))
.map(s —> s.toUpperCase())
.forEach (System.out: :println);
/+ Ausgabe:
DIES
IST
EINE
KLEINE
TEST
DATEI
*/

Prof. Dr. Martin Hirsch Streams

194/355

Beispiel: Stabiles Sortieren nach zwei Schlisseln

Personen sind nach dem Geburtsjahr und innerhalb einer Jahrgangsstufe
alphabetisch sortiert

public class Test {
public static void main(String[] args) {
List<Person> perslList = new LinkedList<>();
perslList.add (new Person ("Klaus", 1961));
persList.add (new Person ("Peter", 1959));
perslist.add (new Person ("Maria", 1959));
persList.add (new Person("Petra”, 1961));
perslist.add (new Person ("Albert", 1959));
persList.add (new Person("Anton", 1961));
perslList.add (new Person("Iris", 1959));
persList.stream()
.sorted (Comparator.comparing (Person: :getName))
.sorted (Comparator.comparing (Person: :getGeb))
.forEach (System.out: :println);

v

Prof. Dr. Martin Hirsch Streams

195/355

Terminale Operationen

@ Mit einer terminalen Operation wird der Strom abgeschlossen

@ Terminale Operationen liefern ein Resultat zurtick (keinen Strom) oder haben keinen
Rickgabewert und eventuell einen Seiteneffekt

value = strom.terminalOperation(...);

strom.terminalOperation(...);

Prof. Dr. Martin Hirsch Streams 196/355

Logische Operationen

@ anyMatch (pred) : liefert true, falls pred(x) fir ein Element x des Stroms zutrifft
@ allMatch (pred): liefert true, falls pred(x) fir alle Elemente x des Stroms zutrifft
@ noneMatch (pred) : liefert true, falls pred(x) fir kein Element x des Stroms zutrifft

v

// gibt solange zufaellige Zahlen x aus, bis ein x € [10,20). Rueckgabe true
new Random () .ints ()

.map (n -> Math.abs (n)%1000)

.peek (System.out: :println)

.anyMatch(n -> 10 <= n && n < 20)
// gibt solange zufaellige Zahlen x aus, bis ein x i [10,20) . Rueckgabe true
new Random () .ints ()

.map (n -> Math.abs(n)%1000)

.peek (System.out: :println)

.allMatch(n -> 10 <= n && n < 10000)

Prof. Dr. Martin Hirsch Streams 197/355

Reduktions-Operationen

@ reduce (e, op):reduziert einen Strom xg, X1, X2, . .. zu dem Wert
(... (((e op x0) op x1) op x2) op. ... Dabeiist op ein 2-stelliger assoziativer Operator

und e das neutrale Element bzgl. op.

@ count () : Anzahl der Elemente im Strom

@ min (cmp) bzw. max (cmp) : Liefert groBtes bzw. kleinstes Element des Stroms
beziiglich der Comparator-Funktion cmp.)

Prof. Dr. Martin Hirsch Streams 198/355

Reduktions-Operationen

int sum = InStream.range(l,11) .reduce(0, (x,y) —-> x+ty);
System.out.println (sum);
01 11 21 ?1 4, 5| 6, 7, 8, 9, 1|0
b i |
14 ,
S ky)xwy)
3 | H
' !
6 :
45
o
55 |
o = = = = 9ae

Prof. Dr. Martin Hirsch Streams

Beispiel: harmonisches Mittel mit reduce-Operation

;—0+;—1+,.7..+Xn‘_1

Anwendung: auf einer Teilstrecke von jeweils 1Tkm werden folgende Geschindigkeiten
gefahren: 50, 100, 80, 120, 90 km/h. Dann ist die Durchschnittsgeschwindigkeit der
Gesamtstrecke gerade das harmonische Mittel der Einzelgeschwindigkeiten:

Vharm = 80, 71 km/h.

)_(harm =

double[] v_array = {50,100,80,120,90};

double v_harm = Arrays.stream(v_array) .reduce{0, (s,v) -> s + 1/v);
v_harm = v_array.length / v_harm;

System.out.println(v_harm);

Prof. Dr. Martin Hirsch Streams

200/355

Statistik-Operationen flir Basisdatentypen

@ count (), sum(), min(), max (), sverage (): Liefert Anzahl, Summe,
Minimum, Maxium bzw. Durchschnittswert der Elemente eines Stroms zuriick

@ summaryStatistics (): Liefert einen Wert vom Typ IntSummaryStatistics(bzw.
DoubleIntSummaryStatistics, ...) zuriickm der Anzahl, Summe, Minimum, Maximum
und Durchschnittswert umfasst.

Prof. Dr. Martin Hirsch Streams 201/355

Beispiel: Zeilenstatistik fir eine Datei

test.txt

Wir werden finfzig! Die Fachhochschule Dortmund feiert inr 50-jahriges Bestehen!
Dieses besondere Jubilaum wollen wir mit Innen zusammen ausgiebig wirdigen. Und
weil wir sehr viel vorhaben, fiillt unser umfangreiches Programm sogar ein ganzes Jahr
—von August 2021 bis Juli 2022.

BufferedReader in = new BufferedReader (new FileReader ("test.txt"));

DoubleSummaryStatistics stat = in.lines() .peek (System.out::println) .mapToDouble(s -> s.
length ()) .summaryStatistics () ;

System.out.println(stat);

Ausgabe

DoubleSummaryStatisticscount=5, sum=276,000000, min=19,000000,
average=55,200000, max=90,000000

v

Prof. Dr. Martin Hirsch Streams 202/355

Terminale Operationen collect und forEach

Collect

collect (collector): Kann benutzt werden, um Elemente des Stroms in einem
Container aufzusammeln. Beispielsweise werden mit folgender Anweisung alle Elemente
eines String-Strom in einer Liste abgespeichert:

List<String> asList = stringStream.collect (Collectors.tolList ());

v,

forEach

forEach (action): fuhre flr jedes Element des Strom die Consumer-Funktion action
(einstellige Funktion ohne Rickgabewert) durch

Prof. Dr. Martin Hirsch Streams 203/355

Beispiel zu collect-Operation

List<Person> persList = new LinkedList<>();

perslist

persList.
.add (new

persList

persList.
.add (new

persList

persList.
persList.
persList.

.add (new

add (new
add (new
add (new

add (new
add (new

Person ("Klaus", 1961));
Person ("Anton", 1959));
Person ("Maria", 1959));
Person ("Petra", 1961));
Person ("Anton", 1973));
Person ("Peter", 1970));
Person ("Anton", 1961));
Person ("Klaus", 1959));

// Sortiere die Namen alphabetisch und entferne die Duplikate
List<String> namelList = perslList.stream() .map (Person::getName)
naturalOrder ()) .distinct () .collect (Collectors.toList ());

System.out.println (namelList) ;

.sorted (Comparator.

Prof. Dr. Martin Hirsch Streams

204/355

Parallele Streams

@ Strome kénnen parallelisiert werden
@ Mit einem Mehrkernprozessor kann damit die Performance verbessert werden

// sequentiell
int max = 10_000_000;
long numberOfPrimes = IntStream.range(l, max).filter (isPrime) .count();

// parallel
int max = 10_000_000;
long numberOfPrimes = IntStream.range(l, max) .parallel().filter (isPrime) .count();

Prof. Dr. Martin Hirsch Streams 205/355

Zum experimentieren

public class Parallel {

public static void main(String[] args) {

int max = 100000;

PrimeCounter pc = new PrimeCounter();

long time = -System.currentTimeMillis();

System.out.println (pc.countPrimes (max));
System.out.println(time + System.currentTimeMillis() + "ms");

}

public static class PrimeCounter {

public long countPrimes (int
return IntStream.range (1,
}

private boolean isPrime (int

max) {
max) .parallel () .filter (this::isPrime) .count () ;

number) {

return IntStream.range (2, number) .allMatch(x -> (number % x) != 0);
}
}
}
v

206/355

Nicht-deterministische Reihenfolge bei parallelen Streams

title
@ Bei der parallelen Bearbeitung eines Stroms ist die Reihenfolge, in der auf die
Elemente des Stromszugegriffen wird, nicht vorhersehbar

@ Elemente von 1 bis 20 werden in einer nicht vorhersehbaren Reihenfolge
ausgegeben, z.B.: 13, 15, 14, 12, 11, 3, 5, 4, 16, 8,6, 1, 10, 20, 18,9 ,2, 19,17, 7

v

IntStream.range (1, 21).parallel().forEach(System.out::print);

Prof. Dr. Martin Hirsch Streams 207/355

Vorsicht bei zustandsbehafteten Funktionen

@ Vorsicht bei Funktionen, die auf nicht-lokale Datenstrukturen zugreifen
(zustandsbehaftete Funktionen)

@ Das Ergebnis der Stromverarbeitung kann vom zeitlichen Ablauf der
zustandsbehafteten Funktionsaufrufe abhangen (race condition)

public class MutablelInt {
int n = 0;
public int get () {

| Es wird eine zustandsbehaftete
public void add(int x) Funktion aufgerufen, die auf die mutable
3 nicht-lokale Variable sum zugreift.

public class Parallel2 {

public static void main(String[] args) { (Variable sum ist auBerhalb des

MutableInt sm = new MutablelInt ();

IntStream.range (1, 1001).parallel ().forEach(x —> Lambda-Ausdrucks definiert)
sm.add (%)) ;
System.out.println(sm.get ());

v

Prof. Dr. Martin Hirsch Streams 208/355

Race Conditions

Race Condition: Die Berechnung von sum=1+2+ ...

zeitlichen Ablauf der sum. add (x) -Aufrufe ab

Zeit t
—_—

+ 1000 = 500500 h&ngt vom

W W

sum[0 0 111 (4 3) (488855) (489855
) B
[sum.add(1)
Parallel
o s sum.add(2)

Aufrufe

sum.add(1000)

Prof. Dr. Martin Hirsch Streams

209/355

Vermeidung von Race Conditions mit synchronisierten Datentypen

@ AtomicInteger kapselt einen Integer-Wert und filhrt Anderungen des
Integer-Werts atomar durch

@ keine Race Conditions
@ Programm wird durch Synchronisierung langsamer

public static void main (String[] args) {
AtomicInteger sm new AtomicInteger (0);

IntStream.range (1, 1001) .parallel () .forEach(x -> sm.addAndGet (x));
System.out.println(sm.get ());
}

Prof. Dr. Martin Hirsch Streams 210/355

Bessere LOsung: auf zustandsbehaftete Funktionen verzichten!
//

Es wird die zustandslose Funktion sum() aufgerufen
int sum =IntStream.range (1,
System.out.println (sum) ;

1001) .parallel () .sum();

=} = = = 1PN G4
Prof. Dr. Martin Hirsch Streams

	Organisation
	Allgemein
	Literatur

	Literatur
	Literatur
	Literatur
	Java
	Einstieg Java - Pitfalls
	Wiederholung Java
	Exkurs: Arten von Klasse
	Hilfreiche Erweiterungen

	Generics - Klassen und Methoden
	Grundlagen
	Wildcards
	Kovarianz, Kontravarianz, Invarianz

	Exceptions
	Java Fehlerbehandlung
	Assertions

	Lambda–Ausdrücke
	Lambda Allgemein
	Entstehungsgeschichte Defaultmethoden

	Collections
	Motivation
	Das Collection-Framework
	Probleme bei Collection
	Map-Schnittstelle

	Streams
	Dateien und Verzeichnisse
	Serialisierung
	Parallelprogrammierung in Java
	Threads
	Das Concurrent-Paket

	JavaFX
	Grundlagen JavaFX
	Properties und Bindings

	scala
	Einführung in Scala
	Funktionale Programmierung mit LISP
	Scala

	Shorts: Imperative Programmierung versus deklarative Programmierung
	Funktionale Programmierung am Beispiel Scala

	C
	Einführung in C

