Files
FH/WS24_25/PyCharm/pythonProject/P5/compute.py
2024-10-29 14:11:37 +01:00

56 lines
1.6 KiB
Python

import matplotlib.pyplot as plt
import pandas as pd
def int_list(input_file: str, vars: []):
data = []
with open(input_file, 'r') as file:
lines = file.readlines()
headers = lines[0].strip().split(';')
for line in lines[1:]:
values = line.strip().split(';')
row_dict = {headers[i]: values[i] for i in range(len(headers))}
data.append(row_dict)
discrete_variables = vars
for var in discrete_variables:
var_values = [row[var] for row in data]
int_values = [int(numeric_string) for numeric_string in var_values]
return int_values
def do_stuff(input_file: str):
int_values = int_list(input_file, ['SalePrice'])
s = pd.Series(int_values)
print(f'Median: {s.median()}')
print(f'Mean: {s.mean()}')
print(f'Quartile: {s.quantile(0.25)} {s.quantile(0.75)}')
print(f'Decile: {s.quantile(0.1)} {s.quantile(0.9)}')
print()
print(f'Range: {s.max() - s.min()}')
print(f'Qartile diff: {s.quantile(0.75) - s.quantile(0.25)}')
print(f'STD: {s.std()}')
def do_stuff2(input_file: str):
print()
# plt.boxplot(int_list(input_file, ['Year Built']))
# plt.show()
# plt.boxplot(int_list(input_file, ['Year Remod/Add']))
# plt.show()
data = [int_list(input_file, ['Year Built']),int_list(input_file, ['Year Remod/Add'])]
fig = plt.figure(figsize=(11, 7))
# Creating axes instance
ax = fig.add_axes([0, 0, 1, 1])
# Creating plot
bp = ax.boxplot(data)
# show plot
plt.show()
def test():
print(int_list("AmesHousing.csv",['SalePrice, Year Built, Year Remod/Add']))
do_stuff2("AmesHousing.csv")
#test()